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...to The Great Professor.





Preface
This textbook is an outgrowth of a first-year course I have been 
teaching at Yasar University in Izmir.  It is a somewhat nostalgic 
course for me.  As a young student back in the early 1970s, I took 
the course called Engineering Sciences ES 100.  There, the instructor 
told us about computation using a slide rule.  The course was very 
informative.  Our instructor was knowledgeable and entertaining.  It 
provided a nice introduction to life as an engineer.  I truly understood
for the first time such concepts as accuracy, computational effort, 
modeling, approximation, order of magnitude, and error terms.  What
remains from the course is not computation, but rather, a general 
substrate of engineering.  Then again, at the start of graduate 
school, I had a most insightful professor, who made an indelible 
impression upon me.  This time we were free to use computers – any 
language we wanted: assembly, Fortran, or COBOL.

The days of slide rules have long past, although I keep mine handy.  
Nowadays we have wonderful software that takes the tedium out of 
computing, and leaves only its joy.  In my courses, I use the Linux 
operating system and open-source software.  This makes it attractive
to students on a fixed budget or to those enterprising students who 
want to dig deep into the source code.  I emphasize that the course 
is not a programming course.  One may use any software, including a
calculator, spreadsheets, or one may compute by hand.

Also gone are the days when we had to thumb through many books 
and magazines to just get an inkling of an idea.  It was indeed an 
arduous task with a healthy dose of tedium -- unnoticed then, but 
probably most unpalatable to the reader today.  Reading material has
changed as well.  One prefers concise and customizable instruction.  
Accordingly, this book is written as a minimalistic cookbook.  It has 
the necessary ingredients to introduce the topic and give summary 
information.  However, the full potential of the book is realized only 
when it is used with the accompanying example code.  The 
combination of concise discussions and executable code is hopefully 
sufficient to whet the appetite and pave the road to understanding, 
and hopefully further, towards skillful mastery.  The real benefit of 
example code is in making modifications and developing custom 
extensions.  This reinforces the interplay between the visualized 
conceptual solution and the computational skills to be developed.

Computational skills are important to an engineer.  Here, the term 
”skill” should be emphasized.  “It is a bit like riding a bicycle,” I tell 
my students. “It can be acquired only by practice.”  After all, the 
theory of riding a bike is simple enough.  One sits on the seat, puts 
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feet on pedals and hands on the handlebar, alternatively pushes on 
the pedals while turning the handlebar to the intended direction.  
Simple enough, right?  But just knowing the theory does not make 
one a rider.  Nor is it possible to ride after watching someone else do 
it.  Computation is also a skill.  Computational skills are quite 
necessary for an engineer, to obtain numerical solutions and to 
develop insights.  Just like riding a bike, though, one must practice 
computation to be good at it.  This entails frequent mishaps and the 
occasional utterly painful failures.  But there is really no other way.  
Also interesting is the fact that it is not easy, if not outright 
impossible, to fake such a skill.  Just ask someone to ride ten paces 
on a bike.  You can easily tell if the rider is a skilled cyclist or not.  
The same goes for computation.  So, it is good advice to the young 
engineer to practice, practice, practice.

...as a textbook

An introductory course could be arranged around the this book.  The 
book should be taken as a minimalistic guide, where supplementary 
material is added either in lectures or from on-line sources.  The 
software will provide demos to facilitate active learning.  In a typical 
course, the student is exposed to a series of industrial engineering 
models.  The important concepts are discussed while simple, brute-
force computational solutions are given.  The objective is not to 
develop the theory of such models, nor is it to provide the most 
elegant or the most computationally efficient solution procedures.  
Rather, the objective is to introduce the concepts and start playing 
with the models at a very elementary level.  Industrial engineering 
students will undoubtedly come across the theory and better solution
procedures in their following years.  Having been through this book, 
however, the industrial engineering student, when faced with such 
courses as optimization, location and layout, scheduling, queueing, 
etc., will have an idea of the conceptual ingredients of these topics.  
Moreover, if need be, the student could find solutions to some 
simplified problems by straight-forward computation.  Such work is 
often the best means to gather insights into a new topic.  Recall that 
much research in these fields start with entertaining example 
problems.

In my course, each chapter of the book takes one week to cover.  I 
give reading assignments related to the topic, so that the students 
come to class (hopefully) prepare and knowledgeable.  On a different
day, the students meet for a laboratory session.  There, the students 
are given a related numerical problem and asked to find a solution.  I 
ask that students keep a good old-fashioned notebook and record 

- ii -



their annotations and findings in a systematic manner.  Students 
submit an engineering report at the end of the of the laboratory 
session.  Engineering reports are to be concise and to the point, with 
rich engineering content but short on verbiage.  As such, the course 
emphasizes experiential active learning and promotes good record-
keeping skills.

There are several good textbooks on industrial engineering models, 
of which only a few are referenced at the end of the book.  As 
needed, the student is encouraged to find on-line reading material 
and video tutorials related to the topics.  Such material is not 
referenced, since it is voluminous and dynamically changing.  A 
simple on-line query would return many good tutorials on any one of 
the topics covered.  In this respect, the course also inaugurates 
lifelong learning paradigms and skills.

The experiments in this book will provide the necessary foundation 
for the student who wants to develop computational skills.  Although 
the examples are from industrial engineering topics, no prior 
knowledge in industrial engineering is needed.  This makes the book 
suitable not only for industrial engineering, but also for related 
disciplines, where computational skills may come in handy.

The example code given in the chapters is available on line at 
books.yeralan.org.

Sencer Yeralan
Izmir, July 2016
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I. ENGINEERING COMPUTATION SOFTWARE
Computation is central to engineering.  Crunching numbers is not, 
however, the end goal of engineering.  Engineers design and build 
products, in a responsible way, to serve practical needs.  
Responsibilities regard economical, environmental, and ethical 
issues.  Engineering design relies on computation.  Computation 
focuses the design effort so that, rather than trial and error, 
components and parameters are selected base on calculation.  
Engineers analyze systems, which also requires computation.  
Analysis often is needed to uncover problems, or to identify leverage 
areas where systems may be improved, so that next-generation 
products are better than the current ones.

The way engineers compute has changed over the years.  Early on, 
all engineering computation had to be carried out by hand.  The pace
of computations, as well as its resolution, suffered.  Over the years, 
many clever numerical techniques have been devised to make 
computation as efficient as possible.  Some of these techniques are 
essential ingredients of the skill set of any engineer.  The 20th 
Century saw the slide rule, followed by mechanical and electronic 
calculators, and finally the ubiquitous do-it-all computer.  Today, the 
computer, including its many platforms (e.g. tablets) is the default 
device that is used in engineering computation.  However -- and this 
is the crucial point – just because the computer solves many 
problems, engineers cannot forgo their responsibility.  The engineers 
must be in the drivers seat, recognizing that the computer is only as 
effective as the engineer who understands the domain and uses the 
software.

There are many good engineering software products available to the 
engineer.  Many of them are open-source software.   The student 
should note that most of these programs share a similar syntax.  
Thus, switching from one platform to another is not much different 
than switching calculators.  At least for a competent engineer.

In this book, we will use mostly Scilab and Octave, two of the most 
widely used open-source software products.  Commercial software 
products such as Matlab and Mathematica are also powerful 
platforms.  However, the open-source products, being freely available
on various operating systems, are more than sufficient for our 
purposes.

This book is written to serve as an introduction to students of 
industrial engineering.  In this sense, it targets two equally worthy 
objectives.  First, it intends to instill engineering skills, discipline, and 
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intuition into the first year student.  In addition, it aims to introduce 
the student to some of the basic models encountered in the field of 
industrial engineering.  The topics are selected such that the 
industrial engineering student is resented with a preview of subjects 
to come.  However, the topics are treated in a rather informal 
manner so that the non-industrial engineering student could also find
the material interesting.  This is done by a series of simple 
computational tasks.  The student will be exposed to, by hands on 
experimentation, topics in industrial engineering, as well as concepts
of computation, programming, and algorithms.  The honing of 
general problem solving skills are encouraged by hands on simple 
computational tasks.

The student is expected to have a background in calculus and linear 
algebra.  Following the contemporary modes of learning, the student 
is also expected to go through software manuals to identify the 
relevant software features that will come useful in tackling the 
computational tasks.

1. The Command Line
Simple computations can be carried out on a calculator.  Most 
engineering software include a command-line interface where 
calculator-like instructions may be entered.  The following figure 
shows the command interface of Scilab, which is called the Scilab 
Console.
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Figure 1.1. The Scilab Console.

The expression 5*(3+1) is written into the Console window.  When 
the user presses the “Enter” key, the answer (20) is displayed.  Note 
that the Console has features above and beyond a calculator.  For 
example, you may define variables and then carry out computations 
using these variables.
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Figure 1.2. Defining simple variables.

Note that Scilab keeps a history of the commands.  You may double-
click on the command in the “Command History” window to re-issue 
the command.  Similarly, there is a “Variable Browser” which shows 
the defined variables and the results of the computations.  Again, if 
you double-click on the variables in this window, further information 
about that variable is shown.

2. The Editor
Issuing commands on a instruction-by-instruction basis in the 
Console is adequate for the simpler calculations.  If one wants to 
carry out detailed computations, then the “Editor” is more 
convenient.  The “Editor” allows you to write your instructions one 
after another, and then save the file.  You may run the instructions, 
or modify the file to update your instructions.  This amounts to a 
programming effort, where the list of instructions saved by the Editor
may be regarded as a program.
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Figure 1.3. A simple script in the Scilab Editor.

The simple three-line script shown in Figure 1.3 defines x and y and 
then displays the result of x*y using the built-in disp() function1.

The double slashes in the beginning of line 1 specify the beginning of
a comment.  Comments are short notes embedded in your code.  
They are ignored during execution.  Good comments are essential to 
make your code readable.

Note that there are different options to execute the script.  “Execute 
with echo” simulates the command console interface.  Each time a 
line is executed, the result is echoed on to the screen.  This is good 
for debugging your scripts.  “Execute without echo” requires you to 
explicitly issue instructions to display the results.

Each of the engineering computation software has many utilities and 
features to be explored.  It is left to the student to go through the 
menus and refer to the software manuals to become familiarized with

1 As a convention of the book, we give the scripts but not the detailed 
explanations of the built-in functions.  The student is referred to the 
software manuals for information on these functions.

- 5 -



these.  Software skills always come handy when you face a real-life 
engineering task.

3. Exercises
1. Define the constants C1=2, C2=4, and C3=9.

2. Using the constants defined in Exercise 1, compute C1C2, and 
C2*(C2/C3).
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II. FUNCTIONS AND GRAPHS
Functions may be expressed analytically, as lists, or graphically.  
Engineers like graphs, since they pack a lot of information in an 
easily observable manner.  A list of independent variables, with 
corresponding dependent variables, is a good way to express a 
function empirically.  Whereas analytical expressions are concise 
forms to express functions, especially if one is using calculus, a list of
independent and dependent variable values is often sufficient for 
numerical work.  Not surprisingly, engineering computation software 
includes many features that facilitate graphing functions.

1. A Simple Graph
The following Scilab code defines a vector x and a vector y, whose 
elements are the squared values of the vector x.

// A trivial function and its plot

x=1:0.1:10
y=x.^2
plot(x,y)

Figure 2.1 A simple function.

The independent vector is defined by the line

x=1:0.1:10

The colons are used to define ranges.  Here, there are three values 
separated by the two colons.  These are the start value (1), the step 
size (0.1) and the end value (10).  You should view the details of 
vector x in the Variable Browser.

The next line defines the dependent variable (y) values.

y=x.^2

Each element of y is defined as the square of the corresponding 
element of x.  The usual symbol for power is the circumflex (^).  
However, note that rather than x^2, we use the notation x.^2, that 
is (.^).  The period before the symbol indicates that the power is to 
be computed element-wise.  Otherwise, x^2 would indicate the 
multiplication of the vector x with itself.  The vector x is a row vector. 
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The multiplication of a row vector and a row vector is not defined.  
You may multiply x with its transpose (i.e., the dot product) in which 
case, the result is a scalar.  Element-wise operations are what we 
need here.

The last line plots the function as pairs of x and y values in a 
separate window.  Scilab puts values on the two axes.  Refer to the 
manuals to find out how you may add additional information, such as
axis titles, to the plot.

plot(x,y)

Figure 2.2 The plot of a simple function.

2. Exercises
1. Refer to the documentation of your engineering software to find 

information on the sin() function. Plot the function sin(x) for x in 
the range -4 to +4 radians.

2. It was mentioned that a dot product is possible provided that a row
vector is multiplied by a column vector.  The vector x used in the 
example is a row vector.  Refer to the documentation of your 
engineering software to find out how you may transpose the 
vector x.  Then find the dot product of x and xT.
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III. LINEAR EQUATIONS
In the previous chapter, we used vectors.  Engineering applications 
also make extensive use of matrices.  A matrix may be defined 
element by element.  The syntax is fairly common.

A=[1 2; 3 4]

 This defines the 2-by-2 matrix

A=(1 2
3 4)

Note that the elements of a row are separated by spaces.  Placing 
commas also works in most software, as below.

A=[1, 2; 3, 4]

1. Matrix Operations
Engineering computation software allows operations that involve 
matrices and vectors.  Again, remember that if you want the 
operations to be carried out element-wise, place a dot before the 
operator.  Of course some matrix operations are already element-
wise, for example A+B is already computed element-wise.  However  
A*B refers to matrix multiplication, while A.*B multiplies the elements
of A and B element-wise.  The former matrix multiplication requires 
that the number of columns of A is the same as the number of rows 
of B.  The element-wise operation is permitted only if A and B have 
the same dimensions.

2. An Example
A childhood riddle states that a farmer had chickens and sheep.  The 
total number of heads were 6 while the total number of feet were 16.
How many chickens did the farmer have?

Th riddle may be formulated by two linear equations in two 
unknowns.  Let C and S be the number of chickens and the number 
of sheep.

C+S=6
2C+4 S=16

In matrix notation, we have,
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(1 1
2 4)(CS )=( 6

16) .

In the console, let us define the square coefficient matrix and the 
right-hand-side matrix.

-->A=[1 1;2 4]
 A  =

    1.    1.
    2.    4.

-->r=[6 16]'
 r  =

    6.
    16.

-->(A^-1)*r
 ans  =

    4.
    2.

Figure 2.1. Console Dump.

Figure 2.1 shows the definition of the coefficient matrix (A) and the 
right-hand-side vector (rhs) in Scilab.  Note that vectors in Scilab are 
defined as row vectors.  The tick mark (single quotation mark) is 
used to transpose the defined vector to a column vector.  From then 
on, the solution is computed simply as the inverse of matrix A, or a 
to the power -1, multiplied by the right-hand-side vector.  The 
console returns the solution vector (4,2)T indicating that the farmer 
has 4 chickens and 2 sheep.

3. Exercises
1. Write the steps in the example as a script and execute the script 

to find the solution.
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2. Generalize your script in Exercise 1 to allow the user to input the 
number of heads and the number of feet.  (Hint: Most software has
an input() function that prompts the user and returns a value. 
Refer to the documentation of your software.)

3. Define 3-by-3 matrices A, B, and C. Then compute A*(B+C).

4. Using the matrices defined in Exercise 3, find (A*B) and (A .* B). 
How do these two differ?

5. Refer to the documentation of your software and find the 
determinant of a 3-by-3 matrix.

6. Refer to the documentation of your software and find out how you 
may define a N-by-N matrix whose elements are random numbers 
in the range 0 to 100.
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IV. GROWTH MODELS
Growth models predict the population as a function of time.  The so-
called Malthusian model, named after Thomas Robert Malthus, is 
given by the simple differential equation

dP(t)
dt

=r P(t)

Where P(t) is the population at time t, and r is the birth rate.  The 
differential equation states that the change in population at time t is 
proportional to the population at time t.

A discrete version of the Malthusian growth can be written as,

Δ P=Pn+1−Pn=r Pn

which yields,

Pn+1=(1+r )Pn .

The Malthusian growth model is thus completely determined when 
the initial population (that is, P(0) or P0) and the birthrate r are given.
The resultant population grows exponentially (geometrically for the 
discrete case) without limit.

The growth is limited by the introduction of a carrying capacity by  
Pierre Francois Verhulst.  The  Verhulstian model assumes that K is 
the maximum population sustainable by the environment. The 
parameter K is called the carrying capacity.  The model reduces the 
birthrate as the population approaches K.

dP(t)
dt

=r P(t )(1−
P (t)
K

)

Notice that, compared to the Malthusian case, the model has an 
additional term.  As P(t) is small compared to K, the model behaves 
like the Malthusian model, since the additional term is close to unity. 
However, as the population approaches K, the additional term 
approaches zero, effectively cutting off the birthrate.  The discrete 
case is similarly evaluated.

Δ P=Pn+1−Pn=r Pn(1−
Pn

K
)

or

Pn+1=Pn(1+r (1−
Pn

K
)) .
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1. Graphing Growth
The following Scilab code computes the population for the next 100 
years.  The birthrate is taken as 0.01, and the initial population, 
p0=100.

The vector population is initialized to a single value of p0.  A for loop 
is used to iterate through 100 years.

clc

// Malthusian growth
// --- parameters ---
p0=100;                    // initial population
birth_rate=0.01;       // birth rate
// --- population ---
population=[p0];     // population (count)

for year=1:100
// update population
population($+1)=..
                 (1+birth_rate)*population($);
end

scf(0);
plot(population);
legend('population');
xtitle('population');

Figure 4.1. Malthusian Growth (Scilab Code).

There are several interesting points to note.

1. The initial instruction clc clears the console.

2. The vector population is initialized to be a vector of size one, 
holding the value p0.

3. A loop is formed where the loop variable year is incremented, 
starting from 1, up to 100.  The loop starts with the keyword for 
and ends with the keyword end.

4. The equation within the loop is executed 100 times, as specified 
with the for statement.  The right-hand-side of the equation refers 
to the element of the vector population($).  Here, the '$' indicates 
the index of the last element of the vector.  Thus, population($) is 
the last population available in the vector.
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5. The population of the following year is similarly defined as 
population($+1).  Note that as new elements are defined, the 
length of the vector is incremented.  Adjusting the size of vectors 
(arrays, in general) is a nice feature of such high-level languages.

6. The equation spans two lines.  The double dots (..) at the end of 
the first line indicates that the next line is a continuation, and 
must be read by the interpreter before executing the instruction.

7. The Scilab function scf(N) selects figure window N.  Here, we will 
draw our graph in window 0.

8. The Scilab functions xtitle() and legend() place meaningful labels 
on the horizontal axis and name the graph.  If we want to plot 
multiple graphs in the same window, preferably in different colors, 
a legend for each graph would make reading the display more 
readable.

The resultant graph shows the typical geometric population growth.

Figure 4.2. Malthusian Growth.

2. Graphing Limited Growth
The addition of a carrying capacity to the code in the previous 
section results in limited growth.

clc
// Verhulst growth
// --- parameters ---
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p0=100;                            // initial 
population
birth_rate=0.01;                // birth rate
K=1000;                            // carrying capacity
// --- population ---
population=[p0];               // population (count)

for year=1:1200
// update population
 pop_growth=..
          birth_rate*population($)*(1-population($)/K);
 population($+1)=population($)+pop_growth;
end

scf(0);
plot(population);
legend('population');
xtitle('population');

d=diff(population);
scf(1);
plot(d);
legend('population(n+1)-population(n)');
xtitle('population change');

Figure 4.3. Verhulst Growth (Scilab Code).

A carrying capacity of 1000 is used.  The code is very similar to the 
previous case, except for the added term in the equation.  The loop is
run for 1200 years.  Note also that a second window is used to plot 
the change in population.  A new vector (d) is obtained by calling the 
Scilab function diff(population).  The function diff() computes the 
successive differences of a given vector.  Note that the resultant 
vector has one fewer element than the original vector.
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Figure 4.4. Verhulst Growth.

Figure 4.5. The Change in Population with Verhulst Growth.

Figure 4.5 shows the change in population over time.  It is observed 
that the population growth is reduced to zero as the population 
approaches the carrying capacity.
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3. Exercises
1. Growth models involving a predator and a prey are extensions of 

the models discussed in this chapter. The Lotka–Volterra equations
are given below.

dR(t )
dt

= αR (t) − βR (t)F(t )

dF( t)
dt

= δR (t)F(t ) − γ F( t )

Here, R(t) is the rabbit population at time t, and F(t), the fox 
population.  The parameters are shown by the four Greek 
characters.  The parameters specify the birthrates as well as the 
interdependency between the predator and the prey.

Model the above growth equations and plot the populations as 
functions of times.  Experiment with different parameters and 
starting populations.
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V. CHAOS AND RANDOMNESS
The growth model discussed in the previous chapter has been the 
subject of some investigation into systems that display chaotic 
behavior.  Specifically, the difference equation

pn+1=r pn(1− pn)

inspired by the Verhulst Growth Model, given appropriate values of r, 
generates a sequence of numbers pn that behave chaotically.  If the 
sequence starts with a value in the range [0, 1] and the parameter 
r<4, then all elements in the sequence will be limited to the range 
[0, 1].  This gives the idea that successive elements of the sequence 
may be used as pseudo-random numbers.  Interestingly, for ranges 
of the parameter r, the sequence behaves nicely and converges to 
target values determined by the parameter value.

1. An Implementation
The following code implements the difference equation.

// chaotic sequences – (pseudo-random numbers?)
// p(n+1)=r*p[n]*(1-p[n])
// --- parameters ---
 r=3.99;                   // rate
 p0=0.5;                   // initial value
 p=[p0];                   // initial population

 for i=1:1000
  p($+1)=r*p($)*(1-p($));  // update population
 end

 scf(0);
 plot(p, 'ro');
 xtitle(sprintf('RNG, r = %f', r));
 xlabel('n');
 ylabel('Pn');

Figure 5.1. Chaotic Sequence based on Verhulst Growth.

You may have noticed the use of the command-line

 xtitle(sprintf('RNG, r = %f', r));

to put a title on the graph.  The built-in function xtitle() places a 
given string as a title, as for instance, in xtitle('My Title').  In our 
example, a constant string is not given.  Instead, we use the sprintf() 
function to construct a string.  The sprintf() function is well known to 
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users of C languages.  It prints a formatted string.  Here we want to 
construct the string to reflect the value of the parameter r.  The '%f' 
is the place holder for the value of a floating point number.  The 
value is usually taken from a variable which follows as a function 
argument. The student is referred to documentation on C language 
library functions for more information on printf() and its many 
variations including sprintf().

The code, when run, plots the sequence of numbers by small red 
circles , as shown below.

Figure 5.2. The Sequence.

Although the numbers look relatively well distributed over the range, 
the sequence is not suitable to be used as random numbers, since 
the sequence displays a very high degree of autocorrelation.

Autocorrelation describes how a sequence (or signal) is correlated 
with its time-shifted self.  In the code below, we plot the values of 
pn+1 against the values of pn.  The plot reveals that if pn+1 is expected 
to be close to pn.

- 20 -



Figure 5.3. Successive Elements of the Sequence.

As can be seen from Figure 5.3, if pn is close to the mid point, the 
next element is close to 1.  Similarly, if pn is close to either boundary,
the next element is close to 0.  Such predictability of the next 
element from the current disqualifies the difference equation from 
being used as a pseudo-random number generator, no matter how 
chaotic its output looks over time.

We repeat the experiment and produce a graph similar to that 
depicted in Figure 5.3, but this time using the built-in pseudo-random
number generator function rand().  Each successive call to this 
function returns another pseudo-random number.
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Figure 5.4. Successive Calls to rand().

Figure 5.4 shows that there is very little if any correlation between 
successive calls to rand().  That is, it is difficult to guess the value of 
Pn+1 from the value of Pn where the elements of Pn are obtained from 
successive calls to rand().

2. Exercises
1. Try different values for parameter r and identify the ranges where 

the sequence behaves chaotically, and where it approaches a 
constant.

2. Suggest modifications to the difference equation to improve its 
usefulness as a pseudo-random number generator.
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VI. SIMPLE NUMERICAL DIFFERENTIATION
Numerical differentiation and integration are essential engineering 
computations.  Numerical differentiation is obtained simply by finding
the difference between successive function values, separated by a 
given step size.  Then, this difference in the function values divided 
by the step size approximates the slope of the function at those 
points.

1. An Example
Numerical differentiation is quite straightforward, as given by the 
following example.

// differentiate sin(x)
clc
clear

 h=0.1;             // step size
 x=-%pi:h:%pi;      // -pi to pi in increments of h
 y=sin(x);

 // z numerical differentiation
 z=diff(y);
 z($+1)=z($);
 z=z./h;

 scf(0);             // figure window 0
 plot(x, y, 'b');    // plot y in blue
 plot(x, z, 'r');    // plot z in red
 xlabel('x');
 ylabel('sin(x)');
 legend(['sin(x)';'d/dx sin(x)']);
 xtitle('numerical differentiation');

Figure 6.1. Numerical Differentiation of sin(x).

The code shown in Figure 6.1 plots sin(x) and its numerically 
computed differentiation.
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Figure 6.2. Graphical Output of the Example Code.

Note that the numerical differentiation looks as expected, that is, like
cos(x).

2. Exercises
1. Try different values for the step size and re-plot the graphs.  What 

values or range would you recommend for the step size? Why?

2. Select three common functions and plot their numerical derivative 
functions.
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VII. SIMPLE NUMERICAL INTEGRATION
The numerical integration of a simple univariate function is useful to 
find the area under the function within a range of the independent 
variable.

1. An Example
The following example uses a function definition for the sake of code 
flexibility.  By changing the function definition, you may quickly 
modify your code to integrate different functions.

clc
clear
// define the function -- try others
function [q]=f(a)
  q=sin(a)*cos(a);
endfunction

// lowerbound and upperbound define
// the interval
// h is the step size
// x is a vector of the independent
// variable values
// x has (upperbound-lowerbound)/h intervals
// x has 1+(upperbound-lowerbound)/h elements
// y is the vector of function values
// z is a vector of numerical
// integration values
// we compute the elements of z by
// incrementally adding the area under
// the function

h=0.1;
lowerbound=0;
upperbound=10;

// set the column x vector
x=(lowerbound:h:upperbound)';

// integral at lowerbound is 0
z=[0];
// function value at lowerbound
y=[f(lowerbound)];

for i=1:length(x)-1
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    y(i+1)=f(x(i+1));
    z(i+1)=z(i)+f(x(i))*h; // rectangular
end

// plot the function and the
// numerical integration
scf(0);
plot(x, y, 'b');
plot(x, z, 'r');
xlabel('x');
ylabel('function and its integral');
legend(['f(x)';'the integral']);
xtitle('f(x) and its integral');

Figure 7.1. Numerical Integration.

The approach is to divide the function into narrow rectangles of width
h.  Here, 'h' is referred to as the step size.  The rectangle at position 
x has an area h time the function value at x.  The code simply loops 
through the range, computes the function values y(x) at x and 
accumulates the areas of the rectangles.  The total area from the 
lower bound to x is stored as z(x), the value of function z at x.  The 
function z(x) is thus the integral of the function y(x).

The code plots the function and its numerical integral, as shown 
below.
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Figure 7.2. The function and its numerical integral.

2. Exercises
1. Try different values for the step size and re-plot the graphs.  What 

values or range would you recommend for the step size? Why?

2. Select three common functions and plot their numerical derivative 
functions.
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VIII. A SIMPLE ALGORITHM: THE BI-SECTION METHOD
Algorithms are ubiquitous computational tools in engineering.  
Although their use may extend to other domains, such as logic or 
signal processing, in engineering, they are used to obtain numerical 
solutions to problems.  Perhaps a good way to understand what an 
algorithm is, is to understand what an algorithm is not.  Take, for 
instance, finding the roots of a second degree polynomial.  If the 
polynomial is a function, such as,

f (x) = ax2
+bx+c

and we are interested in finding the a value of x at which point 
makes f(x)=0, then we have the closed-form formula,

x =
−b+√(b2

−4 ac)
2a

which gives such a value of x.  We call this, as mentioned, a “close-
form” solution, since all one needs to do is plug in the given data 
(the coefficients) and perform the calculations.

In contrast, no such closed-form formula exists for a polynomial of 
degree 5.  So, if an engineering problem requires a value of the 
independent variable at which point, a fifth degree polynomial yields 
the value of zero, then we resort to different computational 
approaches.  An algorithm is such an approach.

An algorithm seeks solutions by an iterative method.  At each step, 
computations are performed, whose results are hoped to converge to
a solution.  Whether such a convergence is guaranteed is an 
important question.  A well-developed algorithm should not only 
produce results which converge to a solution, but should also do so in
as few steps as possible.  Some algorithms never find the exact 
solution.  They only approach a solution.  We discuss such an 
algorithm in the example below.  The so-called bi-section algorithm is
a flexible procedure that is applicable to a wide range of problems.  
Moreover, it has a good convergence rate, and is quite easy to 
implement.

1. An Example
Consider the polynomial

f (x) = x5
−2 x4

+3 x3
−4 x2

+5 x−6

We are interested in a value of x which makes f(x)=0.  The bi-section 
algorithm starts with an interval of the independent variable, which is
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known to contain a solution.  In this case we have a continuous and 
smooth function.  The interval [-100, 100] is guaranteed to contain a 
solution, since f(-100)<0 and f(100)>0.  Thus, someplace within the 
interval the function must have at least one point where it crosses 
the horizontal axis.

Each step of the algorithm reduces the interval by half.  Hence the 
name of the algorithm.  Each step cuts the interval in half.

Specifically, we pick the midpoint of the interval and compute the 
function value.  If the function value is positive, we replace the 
current upper bound with the midpoint.  That is, the midpoint 
becomes the upper bound for the next iteration.  Otherwise, we 
replace the lower bound with the mid point.  After N iterations, the 
interval is 1/(2N) the width of the original interval.

We now give the code.

// find a zero of the polynomial
// f(x)=x^5-2x^4+3x^3-4x^2+5x-6
clc
clear

function [y]=f(x)
  y=x^5-2*x^4+3*x^3-4*x^2+5*x-6;
endfunction

LB=-100;  // initial lower bound
UB=100;   // initial upper bound
x=[];     // empty vectors
y=[];

for i=1:30          // 30 steps suffice

 x(i)=(UB+LB)/2;    // the current x value
 y(i)=f(x(i));      // the current y value

 // update the range [LB, UB]
 if y(i)*f(UB)>0 then UB=x(i);
  else LB=x(i);
 end

 printf("%d:%f %f\n",i, x(i), y(i));
end

Figure 7.1. The Bi-Section Algorithm.
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The polynomial is implemented as a function for added flexibility.  
The remainder of the code is independent of the function.  As such, 
the code may be used for other problems provided that the function, 
and possibly the initial interval are updated accordingly.

The initial interval is set to [-100, 100], defined by the variables LB 
and UB.  Here, we implement the algorithm for 30 iterations.  In 
effect, the width (200) of the initial interval is reduced to 
(200/230=0.186x10-6).  The tail end of the output is shown below.

.

.
24: 1.491797 -0.000011
25: 1.491803  0.000056
26: 1.491800  0.000022
27: 1.491798  0.000005
28: 1.491798 -0.000003
29: 1.491798  0.000001
30: 1.491798 -0.000001

Figure 7.2. The Algorithm Output.

As seen, the algorithm converges to a solution (approximately 
1.492).

2. Exercises
1. Improve the given code by implementing a terminating criterion. 

Define a tolerance, Epsilon with a value of 10-9. Let the loop 
terminate when the width of the interval drops below Epsilon.

2. Add a check at the beginning of the code to make sure that the 
function value at the two ends of the interval are have opposite 
signs (i.e., one is positive and the other negative).

3. Modify the code to find a local extremum (maximum or minimum) 
of a given function.

4. Modify the code by implementing an initial step to ask the user for 
the initial interval.  Plot the function in this interval and ask the 
user if the interval is appropriate, or if the user would like to issue 
a different initial interval.
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IX. A SIMPLE ALGORITHM: THE SECANT METHOD
Before we continue with industrial engineering problems, we dwell on
one more algorithm to rivet the ideas firmly in place.  The Secant 
Method, like the Bi-Section Method already discussed, is a general-
purpose algorithm.  It has better convergence characteristics 
compared to the bi-section method.

The secant method uses the most recent two solutions to find the 
next.  The most recent two solutions provide two points which are 
used to define a line.  The value of the independent variable that 
makes this line cross the horizontal axis is use for the next solution.  
The method is summarized by a second-order difference equation, as
given below.

x3=x2−f (x 2)
x2−x1

f (x 2)−f ( x1)

Intuitively, the method has better convergence properties compared 
to the bi-section method, because it uses more information to pick 
the next solution.  You may interpret this as using information on the 
slope, or as using a linear combination of the most recent two 
solutions.  In contrast, the bi-section method simply picks the mid-
point, irrespective of the change in the function values for the given 
independent variable values.

1. An Example
We use the same polynomial as in the previous chapter, namely,

f (x) = x5
−2 x4

+3 x3
−4 x2

+5 x−6

and start with the same two solutions, x=-100 and x=100.

// find a zero of the polynomial
// f(x)=x^5-2x^4+3x^3-4x^2+5x-6

clc
clear

function [y]=f(x)
  y=x^5-2*x^4+3*x^3-4*x^2+5*x-6;
endfunction

epsilon=1e-8;     // tolerance
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x1=-100;
x2=100;

for nCount=1:100
 if(abs(f(x1)-f(x2))<epsilon) then break; end
 x3 = x2 - (f(x2))*(x2 - x1)/(f(x2) - f(x1));
 x1=x2;
 x2=x3;
 disp([nCount x3 f(x3)])
end

Figure 8.1. The Secant Method.

The code is a straightforward implementation of the difference 
equation.  The output is shown below.

.

.
 1.    1.9998       11.991803
 2.    1.9997999    11.991798
 3.    1.7071857    3.3174612
 4.    1.5952767    1.3550359
 5.    1.5180046    0.3072755
 6.    1.4953431    0.0402559
 7.    1.4919267    0.0014542
 8.    1.4917986    0.0000072
 9.    1.491798     1.314D-09
10.    1.491798     0.

Figure 8.2. The Algorithm Output.

Note that the algorithm terminates in ten steps with an error of less 
than the specified tolerance, Epsilon=10-8.  The loop is set to run for 
100 steps.  However, the loop is broken as soon as the error drops 
below Epsilon.  The maximum loop count is a good idea, in case the 
loop never ends (for example, if one were to accidentally specify 
Epsilon to have a negative value).

2. Exercises
1. Add a check at the beginning of the code to make sure that the 

function value at the two initial solutions are well defined.

2. Is it possible to modify the code to find a local extremum 
(maximum or minimum) of a given function?  If so, how would you 
accomplish this?
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3. Pick another function and find its zero by the secant method and 
the bisection method.  Observe and compare the convergence 
characteristics of these two methods.
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X. AN INVENTORY MODEL
Inventory control is a fundamental topic in industrial engineering.  
Inventory control deals with ordering a batch of items to be stored in 
inventory.  There may be differing modes of ordering the items.  For 
example, there may be lead times (duration from the time an order is
placed until when the order actually arrives) or orders may arrive 
instantaneously, probabilistic quantities, or various discount 
schemes.  The items are drawn from the inventory by a prescribed 
operating policy as well.  Here, there may also be different 
assumptions.  Demand may be known and constant, or be 
probabilistic with a given distribution.  Items may be backlogged (not
immediately delivered but supplied to the customer  at a later date.  
There may be multiple items that share the inventory, or multiple 
levels of inventories (e.g., a hierarchical system of distribution 
centers and local inventories).  Moreover, items may have a limited 
self-life, as in blood stored in blood banks.   Let us look at perhaps 
the simplest model, which still contains the minimal necessary 
components.

Consider a single item to be stored.  The item is ordered in batches 
of quantity Q.  Placing an order has a fixed costs.  This may be a 
processing cost, or perhaps a shipping cost.  Let each time an order 
is placed cost K dollars on top of the cost of the items.  Let K be 
fixed, irrespective of the order quantity.  Let there be a constant 
demand D.  Finally, holding items in inventory has a holding cost h.  
This cost is per item per time unit.

In our model, we take demand, and the two costs as parameters.  
That is, D, K, and h are taken to be determined externally as 
requirements imposed on our system.  These will be considered as 
parameters.  The order quantity is a decision variable.  We would like
to find the best order quantity.  When we say “best” we must also 
define how we compare one choice of the decision variable to 
another.  This measure of “goodness” which will ultimately allow us 
to find “the best” is called an objective value.  In most industrial 
engineering models, an objective function is constructed.  It is a 
function, because the objective is measured as a function of the 
decision variables.

The dynamics for our inventory system is rather straightforward.  If 
we were to consider the number of items in inventory over time, we 
would have a time dependent inventory level function as below.
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Figure 10.1. Inventory Level over Time

The inventory level shown in the figure above depicts the case where
the demand is 10 items per time unit.  The order quantity is 200 
items, which arrive instantaneously.  It follows that the order period is
20 time units.

A good – and often used – objective is to minimize cost.  In this 
model, we have an infinite working horizon, so the total cost will be 
infinitely large.  It is thus reasonable to consider the average cost per
time period.  Alternatively, we can look at the cost in a single order 
period and then divide this cost by the length of the order period.

1. The Model
As a first step to constructing a mathematical model, we first list the 
quantities as described in the previous section.  In square 
parentheses, we give the unit of the variable.  We use $ for cost, T 
for time and # for quantity (item).

Q: order quantity [#]
D: Demand [#/T]
K: Fixed ordering cost [$]
h: Inventory holding cost [$/(#T)]

Figure 10.2. Model Variables and Parameters

We made a special point about units being used.  Engineering 
computations differ somewhat from the more abstract mathematics, 
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such as number theory, in that we usually deal with quantities of 
tangible entities.  These physical entities have not only a magnitude 
but also a quantity.  In many cases, we even must make conversions 
from one unit to another.  For example, the gravitational acceleration
may be 9.81 m/s2 or 32.17 ft/s2 depending on whether we use meters
or feet as our unit of length.

Our objective is to minimize cost per time in the long run.  Looking at
Figure 10.1, we remark on another fundamental concept in systems 
engineering.  The inventory level starts at the order quantity and 
drops linearly until it reaches zero.  Then the cycle repeats.  We call 
this a recurrence.  The order points may be regarded as renewal 
points, where the system simply repeats itself.  Thus, any long-term 
property may be extracted from the properties of a single cycle.  In 
other words, the single cycle captures all of the information 
regarding the system dynamics, irrespective of how long it is run.  
Things simply repeat.  If we are to minimize the cost per time over 
the long run, it would suffice to study just a single period and 
minimize the cost over just one period.

2. Cost Components
There are two components of cost in our model, which we will call C1 
and C2.  Both are expressed as cost per time unit ([$/T]).

The fix cost K is incurred each cycle.  A cycle repeats itself when 
demand D depletes the quantity Q.  That is, a cycle lasts Q/D time 
units.  Notice that Q/D has the correct units, that is, [#/(#/T)]=[T].  
So the cost attributed to ordering is C1=K/(Q/D)=KD/Q per time unit 
([$/T]).

Similarly, there is an inventory holding cost.  The average inventory 
per cycle is Q/2 (why?).  This amounts to a cost per unit time given 
by C2=h(Q/2)(Q/D)=hQ2/(2D).

Total cost per time unit is thus C=C1+C2 in units of [$/T].

3. The Code
We now compute and plot C1 and C2.as well as their sum.  The code is
given below.

clc
h=10     // holding cost [$/(#T)]
K=50     // fixed cost   [$]
D=10     // demand       [#/T]
maxQ=100;
q=1:maxQ // order quantity
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f=[]     // fixed cost
v=[]     // holding cost
c=[]     // total cost

// --- loop to compute costs for 
// various values of q ---
for i=1:maxQ
 f(i)=K*D/i     // fixed cost
 v(i)=h*i/2     // holding cost
 c(i)=f(i)+v(i) // total cost
end

// --- plot costs versus order quantity ---
scf(0) // create figure 0
plot(q',f, 'g') // green : fixed cost/time
plot(q',v, 'b') // blue  : holding cost/time
plot(q',c, 'r') // red   : total cost/time
xtitle('cost/time', 'Order quantity (q)');
legend(['fixed cost/time',..
'inventory holding cost/time',..
'total cost/time']);

Figure 10.3. The Code.

The equations given in the previous section are implemented.  The 
code simply computes the costs C1 and C2 for order quantity values 
from 1 to maxQ=100.  The code also plots the costs C1 and C2 as well
as their sum.
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Figure 10.4. Cost Components.

The total cost per time is plotted in red.  It is clearly seen that the 
total cost has a minimum around 10.

4. Exercises
1. Modify the given code to find the optimum order quantity.  That is, 

the order quantity for which cost per time is minimum.

2. Modify the code to numerically differentiate the total cost per time
function.  Then use a search algorithm to find the order quantity 
for which the derivative of the cost per time function is zero.

3. Which of the two methods (Exercise 1 or 2) of detecting the 
minimum is better?  Explain.

4. Industrial engineers speak of “sensitivity analysis” which are 
usually performed after an optimum is found.  The idea is to 
investigate how sensitive the objective function value at the 
optimum solution is with respect to the given parameters or the 
decision variable.  Compute the following:

How much does the cost (C) change if we change the fixed 
ordering cost (K) by one unit?  That is, give a numerical value 
for

∂C(q , K )

∂K
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evaluated at the points K=50 and q=10.  Note that K=50 is 
the parameter used in the example, and that q=10 is taken as 
the the ordering quantity that minimizes cost per time.

5. Repeat Exercise 4 for parameters h, and D.

- 42 -



XI. FACILITY LOCATION
Determining the optimum location of a facility is a typical industrial 
engineering task.  For instance, we may be interested in finding the 
best location for a machining center somewhere on the factory floor. 
Similarly, we may be interested in placing a distribution center 
somewhere in the vicinity of several factories.

1. An Example.
An airport is to be built to service four cities.  The city coordinates 
are given.  As the airport is built, four roads must also be constructed
linking each city to the airport.  We assume that the terrain is rather 
flat, and that roads are built in straight lines.  What is the best 
location for the airport, so that the total length of road to be 
constructed is minimized?

2. The Code
We place the cities on a two-dimensional grid.  We store the x and y 
coordinates of the cities in vectors.  The airport is to be located at 
one of the lattice points on the grid.  A function is written to compute
the total road length given an airport location.  The code is given 
below.  Note that Scilab underlines the functions in its editor.

clc
clear

// Four planar points, coordinates
// in the range of [0, 99]
x=[10, 80, 35, 36];
y=[42,  9, 91, 19];
// numerically find a point to place
// a new airport, such that the total
// distance from the cities to the airport
// is minimized.

// f(a,b) gives the total distance from
// points (xi, yi) to (a,b)
function [d]=f(a, b)
 d=0;
 for i=1:4
  d=d+sqrt((a-x(i))^2+(b-y(i))^2);
 end
endfunction

Z=zeros(100,100);
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// generate objective function values
// and keep track of the best solution

bestZ=f(1,1);
bestX=1;
bestY=1;

for i=1:100
    for j=1:100
        Z(i,j)=f(i,j);
        if Z(i,j)<bestZ then
            bestX=i;
            bestY=j;
            bestZ=Z(i,j);
            end
    end
end

disp(bestX, bestY, bestZ);

[X,Y] = meshgrid(1:100, 1:100);
mesh(X,Y,Z)

Figure 11.1. The Code

A two-dimensional array (Z) is defined.  Z(i,j) holds the objective 
function value for when the airport is to be located at point (i,j).  Two 
nested loops, one for each dimension are used.  The inner loop also 
keeps track of the objective function values.  The minimum Z(i,j) 
value as well as the coordinates (indices I and j) for which the 
objective function attains its minimum, are displayed.

We must note that engineering software usually has many built-in 
functions to find the minimum or maximum value of a set of 
numbers.  He we explicitly checked each value of the objective 
function and compared it to the best value so far.  We did so 
explicitly to illustrate how such a search might be accomplished by a 
general programming language.  See the exercises for a different 
implementation.

As an added feature, we create a three-dimensional plot.  The 
function meshgrid() creates a two-dimensional matrix.  The plot 
function mesh() is used to plot the objective function surface.
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Figure 11.2. The Objective Function Surface.

For the given city coordinates, the best airport location is computed 
to be (30,36) while the total road length is approximately 150.

3. Exercises
1. Assume that the objective is to minimize the distance to the 

farthest city.  Note that such objective functions are useful in 
minimizing the worst case.  For example, if we were to place a fire 
station in proximity of a few neighborhoods, rather than 
minimizing the total road length, it would make more sense to 
minimize the farthest neighborhood.

2. In this example, all cities are placed on integer lattice points. 
Similarly, we only seek airport locations on integer lattices.  Modify
the code so that the grid resolution is higher.  That is, the airport 
may be located between lattice points.

3. Rather than checking each objective function value against the 
best so far, use a built-in function to find the minimum value of the
mesh (X,Y,Z).

4. A river runs through a 100 by 100 mile grid.  The course of the 
river is given as N = 6* sqrt(E), where E is the east direction and N
is the north direction (a bit like x and y).  A city is located at 
coordinates [20,50].  A port is to be built on the river.  Find the 
location on the river that is closest to the city.
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XII. COMBINATORIAL OPTIMIZATION: THE KNAPSACK 
PROBLEM
The inventory model and the location model discussed in the 
previous chapters are good examples of industrial engineering 
optimization efforts.  These two models involve smooth functions, 
albeit in our computations, we look at discrete points in the 
respective domains.  For example, we search for the best airport 
location among points whose coordinates are integers.  The student 
must have understood that seeking any point on the plane is also 
possible.  This may require different techniques, but nonetheless 
possible.  Our approach is a computational one.  As an engineering 
approximation, we understand that finding the best airport location 
among lattice points is sufficient.

There is another important point to be made about these previous 
models.  Consider the inventory model.  The objective function (cost 
per time) as a function of the decision variable (order quantity) is a 
smooth function.  It can be seen from the graph that shows total cost
per time as a function of the order quantity, that small changes in 
the decision variable makes small changes in the objective function 
value.  This concept is called “locality” which means if you are in the 
vicinity of the optimum solution, so will the objective function be in 
the vicinity of the optimum value.

Combinatorial optimization is somewhat different.  It deals with sets 
and subsets, the inclusion or exclusion of the elements in these sets. 
Solutions are usually defined as sets.  As such, the objective function 
is not a smooth function of the decision variables.  Rather, there is a 
prescribed way of enumerating the objective function value for a 
given solution (set).  Understandably, changing one element of an 
optimum solution set does not necessarily give an objective function 
value in the vicinity of the optimum.  This makes combinatorial 
optimization problems qualitatively different.  It also makes 
computations more demanding.

1. An Example
The knapsack problem is well known in industrial engineering.  Many 
industrial engineering problems are formulated as knapsack 
problems.  Moreover, the knapsack problem encapsulates all of the 
important aspects of combinatorial optimization in a concise manner.

Consider a knapsack to be filled with items.  Each item has a 
specified weight.  Each item also has a specified utility value.  The 
knapsack has a weight limit, which we call its capacity.  The problem 
is to determine which items to put into the knapsack in order to 
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maximize the total value of the items chosen.  Meanwhile, the total 
weight of the items must not exceed the given capacity.  From a set 
theoretic viewpoint, the set of all items is given.  We are asked to 
select a subset, so that the capacity constraint holds and the total 
value is maximized.

We first compute a solution by total enumeration.  Consider the 
following code.

clc                 // clear the console
clear

w=[90 12 32 22 14 31];   // weight
v=[ 1 14 41 53 24 47];   // value
c=48;                    // capacity
n=[1 2 3 4 5 6];         // items

// number of possible solutions (ask why?)
count=2^6;
tv=[];            // solutions: total value
tw=[];            // solutions: total weight
s=zeros(count,6);

for i=1:count;
 k=i;
 tv(i)=0;
 tw(i)=0;
 for j=1:6
    s(i,j)=pmodulo(k,2);
    k=floor(k/2);
    if s(i,j) then
      tw(i)=tw(i)+w(j);
      tv(i)=tv(i)+v(j);
    end
 end
 if tw(i)>c then tv(i)=-1; end;
end

// start with solution 1 as the best
best_index=1;
best_value=tv(1);

for i=2:count
 if(tv(i)>best_value) then
  best_index=i;
  best_value=tv(i);
 end
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end

disp("--- solution ---")
printf("items loaded: ");
for j=1:6
    if s(best_index,j) then
     printf("%d ", j);
    end
end
printf("\n");
printf("best value  : %d\n", best_value);
printf("total weight: %d (c=%d)\n",.. tw(best_index), 
c);

Figure 12.1. The Code

The code gives an example with 6 items to be placed in a knapsack 
with capacity 48.  The vector w contains the weights of the items.  
Similarly, the vector v contains the values.  We generate all possible 
combinations.  For this, consider that there is a separate decision for 
each item: to be placed in the knapsack or not.  Thus, the total 
number of combinations is 26.  We set the variable count=26.  
Similarly, a solutions array s is used.  The array has count=26 rows 
and 6 columns.  Each row of s corresponds to a possible combination.
We compute combinations at row k successively dividing k by 2 and 
checking if it is odd or even.  The Scilab function pmoluo() is used for
this purpose.  If odd, we assume that the item is to be loaded.  In this
case, we add its value and weight to vectors tv and tw, respectively.  
If the weight exceeds the capacity, we mark the value tv(i) as -1, so 
that it is never selected as a solution.

In a separate loop, we scan the values and identify the best one.  Its 
index is also saved.  Finally, the solution is printed out.

 --- solution ---   
items loaded: 2 4 5
best value  : 91
total weight: 48 (c=48)

Figure 12.2. Code Output.
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2. Exercises
1. The given example code fixes the number of items to 6.  Modify 

the code so that the number of items is defined by a variable (N) 
at the top of the code.  Generate random value and weights in the 
range of 1 to 100.  Run the code for various values of (N). Measure
how long it takes to find a solution.  What is the practical limit of 
(N)?

2. Consolidate the given example code to keep track of the best 
value and the index to which this corresponds in the first loop. This
way, the second loop may be eliminated.  Does this improve run 
time?

3. Modify the code to print out alternative solutions, when they exist.
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XIII. HEURISTICS FOR COMBINATORIAL OPTIMIZATION: THE 
KNAPSACK PROBLEM
We continue our discussions on the knapsack problem that was 
introduced in the previous chapter.  As we observe, the exact 
solution by total enumeration requires the evaluation of 2N different 
subsets.  The computational difficulty of this approach grows 
exponentially with N.  Note that 2N eventually grows more rapidly 
than any polynomial in N, e.g. N2 or N3.  Case in point, 2N surpasses 
N2 at N=5, and N3 at N=10.  Afterwards, the exponential quickly 
outstrips the polynomials.  At N=20, for example, while N2=400 and 
N3=8000, 2N reaches the value of 1,048,576.   This means that 
sooner or later, we will reach a practical computational limit on N.

The good news is that in engineering applications, it often suffices to 
find good solutions, if not the best (optimum).  Moreover, 
engineering applications usually concern physical systems, where 
the problem reflects this physical structure.  For instance, it was 
mentioned that quantities in engineering, unlike abstract 
mathematics, almost always have units.  The knapsack problem is a 
good example of this. We want to maximize the value packed into 
the knapsack with items of varying value and weight.  This already 
suggests solution techniques that would yield better solutions than 
randomly selecting the items.  Such intuitive solution techniques are 
called “heuristics.”  We present such a heuristic in this Chapter.

1. A Heuristic for the Knapsack Problem
Since we are interested in packing as much value into the knapsack, 
we would like to pick items with high value but low weight.  Both of 
these desires, low weight and high value, could be addressed if we 
compute the value-per-weight measure for each item.  Then, we may
proceed by stuffing the knapsack with items in decreasing order of 
value-per-weight, until the capacity is reached.  Note that, although a
sensible one, this procedure is not guaranteed to yield the optimum 
solution.  Consider, for example the case of four items with weight 
and values given as follows.
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Item Weight Value Value/Weight

1 4 12 3

2 4 11 2.75

3 3 8 2.67

4 3 8 2.33

Figure 13.1. An Example.

If the knapsack has capacity 10, and we apply our heuristic, we pick 
items 1 and 2, since they have the highest value per weight.  Their 
total weight will reach 8, and thus leave no room for the other items. 
The total value packed would be 12+11=23.  This is clearly not the 
optimal solution.  Packing items 1, 3, and 4 would result in a value of 
28 and a combined weight of 10.

2. The Code
We now give sample code that implements the heuristic.

clc                 // clear the console
clear
N=30;
w=floor(rand(N,1)*10+1);     // weight
v=floor(rand(N,1)*100);      // value
c=72;                        // capacity

disp("--- heuristic ---")
disp("--- v ---")
disp(v)
disp("--- w ---")
disp(w)
r=v./w;  // element-wise operation
disp("--- r ---")
disp(r)

disp("--- included indeces ---")
l=0;
value=0;
for k=1:N   // repeat N times

  max_index=1;
  max_ratio=r(1);

  for i=2:N
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    if(r(i)>max_ratio) then
        max_ratio=r(i)
        max_index=i;
     end
  end

  if (l+w(max_index)<=c) then
    l=l+w(max_index);
    disp(max_index);
    value=value+v(max_index);
  end
  r(max_index)=-1;
end

disp("--- value ---")
disp(value)
disp("--- load ---")
disp(l)

Figure 13.2. The Code.

The code solves the heuristic for N items.  The item weights and 
values are randomly generated and held in vectors w and v, 
respectively.  The vector r computes the value-to-weight ratio.  The 
main loop is executed N times.  At each iteration, we find the item 
with the highest value-to-weight ratio, and place it into the knapsack,
provided that there is enough capacity left.  Once an item is placed, 
or considered but disregarded, due to its weigh, we mark its ratio as 
-1.  This prevents the item from being considered during the future 
iterations, since all N items have nonnegative ratios.

The code runs in reasonable time for N up to a few thousand in a few 
seconds.

3. Exercises
1. Run the heuristic for different values of N and measure the 

computation times.  Plot the time the heuristic takes to solve 
problems as a function of N.  What type of function is this?

2. Combine the code with the one given in the previous chapter. 
Solve a number of randomly generated knapsack problems, both 
to optimality, and using the heuristic.  Find out how often the 
heuristic finds the optimum solution.

3. (Difficult) Are there special cases where the heuristic is 
guaranteed to find the optimum solution to the knapsack problem?
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XIV. COMBINATORIAL OPTIMIZATION: THE TRAVELING 
SALESMAN PROBLEM
A salesman is to conduct a tour to visit a set of cities.  Each city is to 
be visited once and only once.  The salesman is to complete the tour 
by returning to the starting point.  Given a set of N cities, say {1, 2, 
3,.. ,N} it is easy to schedule such a tour.  In fact, any permutation of 
the numbers 1 to N would be a tour.  Since the salesman may start at
any city, we can fix the starting point, say city 1.  This gives us (N-1)!
possible tours.  The twist comes when city-to-city distances are of 
concern.  If the salesman wants to complete the tour in the shortest 
possible total travel distance, then the problem becomes very 
difficult.  In fact, one is almost forced to evaluate all (N-1)! tours and 
find the shortest.  As the knapsack problem that required in the order
of 2N evaluations, the Traveling Salesman Problem (TSP) has a 
computational difficulty that surpasses any polynomial-time solution. 
For, N! will surpass any polynomial in N (say Nk for any k>1).  Even 
N10, which grows quite rapidly, is surpassed by N! at N=15. 

The TSP is of interest to industrial engineers, since many scheduling 
problems reduce to the TSP.  Consider a job shop that is to paint N 
automobiles, each a different color.  Although each paint operation 
takes the same time, setting up the equipment depends on the 
colors.  If a white automobile is to be painted after a black one, 
cleaning the paint guns takes more time compared to the case where
a black automobile is to be painted after a white one.  This is 
because a little dark paint left in the paint gun will show in the lighter
color, while the effect in the reverse case will go unnoticed.  
Scheduling these N automobile paint jobs is like traveling through N 
cities, where each city is to be visited once.

1. The Code
The following code solves a TSP by total enumeration.  

clc                      // clear the console
clear

N=4;                     // number of cities

// random [0,100] distance matrix
// from row r to column c
d=round(rand(N,N)*100);
disp("--- random distance matrix ---")
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disp(d);

c=[1:N];            // cities
a=perms(c);         // permtations of cities

// number of possible solutions
count=factorial(N-1);

t=[];               // total tour lengths

disp("--- possible tours : lengths ---")
best_tour=0;
min_length=%inf;

for i=1:count;
// compute tour length for tour i
 t(i)=d(a(i,N),a(i,1));
 for j=1:N-1
  t(i)=t(i)+d(a(i,j),a(i,j+1));
 end
 if(t(i)<min_length) then
     min_length=t(i);
     best_tour=i;
 end

disp([t(i), a(i,:)]);
end  // end of tour i

disp("--- solution ---")
printf("min tour length: %d\n", min_length);

disp(a(best_tour,:));

Figure 14.1. The Code

A random distance matrix is generated with integer values in the 
range of [0, 100].  The vector c contains the city indices, that is, 
c=[1, 2, ...N].  The array a holds all permutations of the city indices.  
Each row of array a is a permutation of the indices in c.  All (N-1)! 
tours are evaluated and the corresponding tour lengths stored in 
vector t.  As we evaluate tour lengths, we keep track of the shortest 
tour by saving its index in best_tour and its length in min_length.  
The code terminates by displaying the solution.
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2. Exercises
1. Find examples that can be modeled as a TSP in everyday life.

2. Change N and make a few runs.  Plot the average time it takes to 
solve the TSP as a function of N.  What is a practical computational
limit to N?
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XV. A HEURISTIC FOR THE TRAVELING SALESMAN PROBLEM
The TSP is a computationally difficult problem. As the number of 
cities (N) increases, the effort to find the optimum solution becomes 
prohibitively expansive.  Hence, one often resorts to heuristical 
solutions.  A most intuitive heuristic is the so-called “nearest 
neighbor” approach.  The idea is simple: start with a city, and go to 
the nearest city.  At each step, find the nearest city not yet visited 
and go there next.  Although this heuristic may not always find the 
optimum solution, it nonetheless finds good solutions, usually much 
better than a simple random ordering.

1. The Code
In an attempt to make the code more understandable, we make use 
of two functions.  The function Visited(tour, i) takes a vector (tour) 
and an index (i).  If the index is an element of the vector (tour), then 
the function returns 1, representing the Boolean value “TRUE”.  
Otherwise, it returns the value 0, representing “FALSE”.

// this function returns true (1)
// if city i is already in the tour
// else it returns false (0)
function result=Visited(tour, i)
result=0; // assume not visited
for j=1:length(tour) 
 if(tour(j)==i)
  result=1;
  break;
 end;
end
endfunction

Figure 15.1. The Function “Visited()”.

The next function GetNearestCity(tour, d) takes a vector (tour) that 
contains the indices of the cities in the partial tour, and a distance 
matrix (d).  It returns the index of the unvisited city that is nearest to 
the last city in the partial tour.  The number of cities is deduced from 
the size of the distance matrix (d).

// this function returns the nearest
// unvisited city from the last city
// in the tour
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function NearestCity=GetNearestCity(tour, d)
LastCity=tour($);
NearestCity=0;  // to be replaced
DistanceToNearest=%inf;

for i=1:size(d, 'r')
 if ~Visited(tour, i)
  if(d(LastCity, i)<DistanceToNearest)
   DistanceToNearest=d(LastCity,i);
   NearestCity=i;
  end
 end
end
endfunction

Figure 15.2. The Function “GetNearestCity()”.

Using functions that meaningfully encapsulate a logical task is 
central to structured programming.  This not only improves code 
readability, but it positively affects code performance.  It also 
facilitates code re-usability, since general-purpose functions may be 
imported to other code applications.  In fact, writing general-purpose 
functions and combining these in libraries are common practice in 
software.

With the aid of the two functions, the main code becomes quite 
straightforward.

N=100;                  // number of cities

// random [0,100] distance matrix
// from row r to column c
d=floor(rand(N,N)*100);

tour=[1];    // start from city 1
for i=2:N
j=GetNearestCity(tour, d);
tour(i)=j;
end

// compute tour length for the tour
 t=d(tour(N),tour(1));
 for j=1:N-1
  t=t+d(tour(j),tour(j+1));
 end
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// print city sequence for the tour and the tour length
 disp(tour);
 disp(t);

Figure 15.3. The TSP Heuristic Main Code.

The code runs for quite large problems, several hundred cities, in a 
few seconds.  An exact solution by total enumeration for even 100 
cities would be impossible, as 100! is about 10158. Considering that 
the universe is about 1017 seconds old, and that the fastest current 
supercomputer can execute about 50 PLOPS (50x1015 floating-point 
instructions per second), it would take the fastest computer today 
10124 times the age of the universe to go through all possible 100-city
tours.  Note that 10124 is a very large number indeed.

10124=10,000,000,000,000,000,000,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0
00,000,000,000,000,000,000,000,000,000,000,000,000.

Our supercomputer must run this many times the age of the universe
to evaluate all 100-city tours.

2. Exercises
1. Plot the tour length obtained from the nearest neighbor heuristic 

as a function of N.

2. Use the code to evaluate how well the nearest neighbor heuristic 
performs compared to random tours.  First evaluate the length (R) 
of the random tour (the sequence 1, 2, 3,..N), and then evaluate 
the tour length obtained from the heuristic (H).  Plot the ratio H/R 
as a function of N.  Suggest a functional form for this curve.

3. Find out how fast the nearest-neighbor heuristic works as a 
function of the number of cities.  Generate a several random 
problems with N in the range of 100 to 1000 and plot the CPU 
times against N.

4. (Difficult) Find information on other TSP heuristics and code these.

- 61 -





XVI. THE ASSIGNMENT PROBLEM
Not all combinatorial industrial engineering problems are difficult.  A 
case in point is the so-called assignment problem.  The problem tries 
to assign N jobs to N different machines.  The cost of each job on 
each machine is known.  The objective is to assign each job to a 
unique machine so that the total cost is minimized.

Although at first glance, it is a combinatorial problem.  There are N! 
different ways we can order the jobs.  Each ordering corresponds to 
an assignment.  Nonetheless, compared to the TSP, the assignment 
problem has a rather simple solution.  The best known algorithm for 
the assignment problem is the “Hungarian Algorithm.”  Its 
computational difficulty is of polynomial order.  More specifically, 
given N jobs, the number of computations required to find a solution 
is in the order of N4 (recent improvements have further reduced the 
order).  This order of complexity is much better than total 
enumeration by considering all N! assignments.

The reason why some combinatorial problems are computationally 
difficult (exponential-time algorithms) while others are not 
(polynomial-time algorithms) is intuitively addressed by considering 
the structure of the problem.  The assignment problem has a 
polynomial-time algorithm.  Also note that the assignment problem 
has a lot more structure as well.  The number of jobs and the number
of machines is equal.  Each job is assigned to one machine, and each
machine is assigned only one job.  Such restrictions limit the feasible 
region of the decisions, and hence serve to limit the complexity of 
the solution process.

1. The Code
We use total enumeration to solve the assignment problem.  
Although total enumeration is way overkill, it is simple to code.  
Unfortunately, as N gets larger, total enumeration becomes 
computationally prohibitive.

clc                // clear the console

// cost matrix, job at row r is assigned
// to machine at column c
c=[1 2 3 4 5;
   1 4 3 5 4;
   2 1 5 2 1;
   6 3 2 5 6;
   6 3 5 2 4];
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j=[1 2 3 4 5];        // jobs
a=perms(j);           // permtations of jobs
count=factorial(5);   // number of solutions
s=[];                 // assignment costs

disp("--- assignment costs ---")
disp(c)

disp("--- possible assignments : costs ---")
best_index=1;
best_cost=%inf;

for i=1:count;
 s(i)=0;
 for j=1:5
  s(i)=s(i)+c(j, a(i,j))
 end

 if(s(i)<best_cost) then
  best_cost=s(i);
  best_index=i;
 end
 disp([a(i,:), s(i)]);
end

disp("--- solution ---")
printf("best cost: %d\n", best_cost);

// display alternative solutions
for i=1:count
 if(s(i)==best_cost) then
  disp(a(i,:));
 end
end

Figure 16.1. The Code.

The code works well for small N.  In this case (N=5) the solution is 
readily computed in a fraction of a second.

--- assignment costs ---   
 
    1.    2.    3.    4.    5.
    1.    4.    3.    5.    4.
    2.    1.    5.    2.    1.
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    6.    3.    2.    5.    6.
    6.    3.    5.    2.    4.
 --- solution ---   
best cost: 8

2.    1.    5.    3.    4.

Figure 16.2. The Output.

The solution indicates that jobs 1, 2, 3, 4, and 5 are assigned to 
machines 2, 1, 5, 3, and 4, respectively.

Job Machine Cost

1 2 2

2 1 1

3 5 1

4 3 2

5 4 2

Total 8

Figure 16.3. The Optimal Assignment.

2. Exercises
1. Rather than the costs, let the assignments yield different profits on

different machines.  That is, instead of a cost matrix, we now 
consider a profit matrix.  Modify the code to find the maximum 
profit assignment.

2. Let the cost matrix give the machining times for each job on each 
machine.  Once the assignment is made, let all machines start at 
the same time.  Find the assignment that minimizes makespan. 
That is, minimize the time it takes all jobs to finish.

3. Modify the task in Exercise 2 to show all possible alternative 
solutions.

4. (Difficult) Investigate the Hungarian Algorithm to solve the 
assignment problem.  Code the algorithm and investigate the 
performance advantages over the present code.
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XVII. SCHEDULING: THE SINGLE MACHINE CASE
Scheduling problems in industrial engineering often lead to 
combinatorial optimization.  The simplest scheduling problem is 
perhaps the single machine, N jobs case.  Here, we have N jobs, each
associated with a processing time, available at the start.  The 
machine is to process all jobs.  The decision involves the sequence in
which the jobs are to be processed.

Let us also define a few other keywords. The so-called “flowtime” for 
a job is the total time it spends in the system.  First the job waits for 
its turn on the machine, and then, it undergoes the operation.  The 
latter is the processing time for the job, which is assumed to be 
constant and known.  Sometimes jobs have “due dates”.  The 
difference between the due date and the completion time is called
lateness.  Lateness can be positive (the job is finished after the due 
date) or negative (the job is finished before the due date), or zero 
(the job is finished exactly on the due date).    Tardiness is also used 
to indicate if a job is late.  If the job finishes on or before its due date,
then tardiness is zero.  If the job is finished after its due date, then 
tardiness is the same as lateness.  If a job is completed before its 
due date, than the difference between the due date and the 
completion time is called the “earliness”.

1. Minimize Average Flowtime
The code given below defines jobs with processing times.  As a brute-
force attempt, we once again consider all possible sequences of the 
jobs.  That is, N! possible schedules. Note that the total processing 
time does not change for these different schedules.  The total 
processing time is computed once and saved as a global variable 
(tpt).  A global variable is a variable that is visible to all parts of the 
code, including the functions.

clc                     // clear the console
clear
N=6;                    // number of jobs
MaxP=100;               // max processing time
p=ceil(rand(N,1)*MaxP); // processing times
tpt=0;                  // total process time

disp(p);

Figure 17.1. Generating Random Jobs.

For each, we compute an average flow time.  The function 
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GetFlowtime() is defined to simplify the computations.

function ft=GetFlowTime(s, k)
ft=0;
    for j=1:N
        ft=ft+p(s(j));
        if s(j)==k then break; end
    end
endfunction

Figure 17.2. Computing the Flowtime of Job k for Schedule s.

The function takes two arguments.  The first (s) is a vector of job 
indices in a given sequence.  The sequence determines the schedule.
The second argument is the index of the job whose flowtime is to be 
computed.  Note that the number of jobs (N) and the processing 
times (p) are defined as global variables before the function 
definition.  Thus, the function already has access to these variables.

We next define the jobs, the number of schedules, and a permutation
matrix (a) whose rows are the possible schedules (permutations of 
job indices).  The total processing job (tpt) was defined as a global 
variable with an arbitrary value.  Here we compute its value and 
assign it to the variable.

jobs=[1:N];
a=perms(jobs);       // permutations of jobs
count=factorial(N);  // number of schedules
f=[];                // average flow time

for i=1:N
tpt=tpt+p(i);
end

Figure 17.3. Computing the Flowtime of Job (k) for Schedule (s).

The remainder of the code is quite straightforward.  We compute the 
average flow time for each schedule and keep track of the best 
average in the process of doing so.  The code terminates with 
displaying the schedule that yields the lowest average flowtime.

// ---compute the average flowtime ---
best_ave_flowtime_index=0;
best_ave_flowtime=%inf;
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for i=1:count;
 f(i)=0;
 for j=1:N
  f(i)=f(i)+GetFlowTime(a(i,:), j);
 end
 f(i)=f(i)/N;
 
 if (f(i)<best_ave_flowtime) then
   best_ave_flowtime=f(i);
   best_ave_flowtime_index=i;
  end
end

disp("--- solution ---")
disp(a(best_ave_flowtime_index, :));
disp(best_ave_flowtime);

disp("flow times: ");
 for j=1:N
  printf("%6.2f ",..    GetFlowTime(..
     a(best_ave_flowtime_index,:),..
     j));
 end

Figure 17.4. Finding the Schedule with Best Average Flowtime.

As our approach looks at all possible schedules, once again, the 
computational effort is quite high.  We must look at N! possible 
schedules and select the best among them.  The output of the code 
is shown below.

    29.
     9.
    63.
    35.
    71.
    53.

 --- solution ---

    2.    1.    4.    6.    3.    5.

    115.83333
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 flow times:
38.00   9.00 189.00  73.00 260.00 126.00

Figure 17.4. Code Output.

There are 6 jobs with randomly generated processing times.  The 
processing times are 29, 9, 63, 35, 71, and 53.  The sequence that 
minimizes the average flowtime is 2-1-4-6-3-5.  The minimum 
average flow time is computed as 115.83.

2. Exercises
1. You may notice that the sequence 2-1-4-6-3-5 that minimizes the 

average flowtime in the example also follows a certain logic.  It is 
in the order of processing times, from the lowest to the highest.  In
scheduling, this sequence is called the “Shortest Processing Time” 
ordering, or SPT for short.  Run several examples and observe if 
SPT minimizes the average flowtime in each trial.

2. Modify your code to generate random due dates.  Then compute 
the average tardiness for each schedule.  Does SPT also minimize 
average tardiness?

3. With randomly generated due dates. compute the maximum 
tardiness for each schedule.  Does SPT minimize the maximum 
tardiness among jobs?

4. In Exercise 2 above, check if ordering the jobs according to their 
due dates minimizes the maximum tardiness.

5. (Difficult) Return to the problem of minimizing the average 
flowtime for N jobs.  Suppose that we have two machines.  In 
general, we would have different processing times for a given job 
on each machine.  To start with, let us assume that the job 
processing times are the same for each machine.  Write code to 
generate all possible schedules.  Note that each job is processed 
either on machine 1 or machine 2.  Among the possible schedules,
find the one that minimizes the average flowtime.

6. (Difficult) Repeat Exercise 5, but with due dates.  Find the schedule
that will minimize the maximum tardiness.
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XVIII. NETWORK MODELS: SHORTEST PATH
A network is a collection of nodes and arcs.  A network is also called 
a graph, and hence the term “graph theory” in mathematics and 
operations research.  Similarly, nodes and arcs are also known as
vertices and edges.  The nodes and the arcs may have associated  
attributes.  Many industrial engineering models involve networks.  
For example, activities with precedence relations are easily modeled 
by networks.  This becomes handy in project management.  The 
Traveling Salesman Problem discussed in the previous chapters is 
also defined on a network of cities.  Similarly, decision trees and 
probabilistic “what if” scenarios may be modeled as networks.  A 
flowchart is essentially a network, where the nodes contain 
information about the operations performed.  Even the assignment 
problem we discussed may be considered as a network problem.  
Here, the network connects elements of a set of jobs to the elements
of a set of machines.

Here, we consider a simple network, one that is actually a map of 
cities and roads.  The arc attributes are the lengths of the roads.  We 
pick an origin and a destination.  We want to find the best path to 
travel from the origin to the destination. Choosing the objective to be
to minimize travel distance is reasonable.  This problem is called the 
“shortest path” problem in networks.  It is a fundamental problem 
that we encounter a lot in industrial engineering applications.  For 
instance, the related problem, the “longest path” determines project 
completion time if the nodes are the various stages of the project, 
and the arc lengths represent time to reach a stage from a previous 
stage. 

1. An Example
Consider the following example.  Here we have 6 cities.  The 
numbers associated with the arcs are the road lengths between the 
cities.  Note that we use undirected arcs.  In this case, the distance 
between adjacent cities is the same in either direction.  It is also 
possible to consider different lengths for opposite directions.  This is 
the case in air travel, where a tail wind or a head wind makes a 
difference.
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Figure 18.1. The Network (Origin 1, Destination 6).

Here, we want to find the path from the origin (City 1) to the 
destination (City 6) that has the shortest distance.  The shortest path
is easily detected by inspection.  However, when the number of 
nodes and arcs increase, the task of finding the shortest path may no
longer be so trivial.

2. An Algorithm
Dijkstra'a algorithm is used to find the shortest path.  The algorithm 
is very intuitive.  We shall use it without proving that it works.  
Throughout the algorithm, we work with two sets: the visited nodes, 
and the unvisited nodes.  The two sets are complements of each 
other.  In the beginning, the visited nodes contain only the origin.  All
other nodes are unvisited.  Each node has a distance from the origin. 
This distance is zero for the origin.  In the beginning, the distance 
from the origin is infinity for all unvisited nodes.

At each iteration, we consider all arcs from visited nodes to unvisited 
nodes.  Essentially, we are considering how we can go to an 
unvisited node, from one of the visited nodes.  Now, each visited 
node has a distance associated with it.  It measures how far that 
visited node is from the origin.  Suppose we travel on an arc i to j, 
where i is a visited node and j is an unvisited node.  By doing so, we 
will have visited previously unvisited node (j).  We can compute the 
total distance from the origin to this newly visited node (j) by adding 
to the arc length to the distance from the origin to node (i).  We do 
not immediately take an arc, but consider all possible arcs i to j, 
where node i is visited and node j is unvisited.  For each case, we 
compute and tentatively assign to the nodes j, their computed total 
distance from the origin.  Among all possible arcs, we pick the one 
that takes us to a node j, whose total distance from the origin is the 
smallest.  Intuitively, we next visit that previously unvisited node 
which is the closest to the origin.
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Thus, at each iteration, we add one more to the set of visited nodes.  
This node is removed from the unvisited nodes.  Given N nodes, 
since at each iteration, we visit another node, after N-1 iterations, 
the algorithm will terminate (not N but N-1, since the origin was 
already added to the set of visited nodes).  The algorithm may be 
terminated sooner if we reach our destination, while some nodes 
remain unvisited.

3. The Code
We first define a distance matrix.  Element (i,j) f the matrix is the 
distance from node i to node j.

clc                  // clear the console
clear

// distance matrix (symmetric)
d=[%inf    1    1 %inf %inf %inf;
      1 %inf    2    2    1 %inf;
      1    2 %inf %inf    3 %inf;
   %inf    2 %inf %inf    1    3;
   %inf    1    3    1 %inf    1;
   %inf %inf %inf    3    1 %inf];

disp(d);
N=size(d,1);

Figure 18.2. The Distance Matrix.

Note that in this case, the distance matrix is symmetric.  The 
algorithm works equally well if the distance matrix is not symmetric.

origin=1;             // origin node
destination=6;        // destination node

visited=[origin];     // visited nodes

// unvisited nodes
for i=1:N 
 if(i<>origin) then unvisited($+1)=i; end
end

// shortest distance from origin to the nodes
for i=1:N distance(i)=%inf; end
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distance(origin)=0;
previous=zeros(N);

Figure 18.3. The Distance Matrix.

Next we specify the origin and the destination and construct the sets 
“visited” and “unvisited”.  The vector “distance” whose elements 
give the distance from the origin to the nodes is initialized.  Finally, 
the vector “previous” is initialized to all zeros.  Element j of this 
vector will hold the city index i, if arc i-to-j is used to reach city j (that
is, if arc i-to-j is on the shortest path).

After the initialization steps, we are now ready to implement the 
algorithm. The main loop executes as a new node is added to the set 
of visited nodes at each iteration.

while length(unvisited)
 best_i=0;
 best_j=0;
 best_distance=%inf;
 
 for i=1:length(visited)
  from=visited(i);
  for j=1:length(unvisited)
   to=unvisited(j);
   if distance(from)+d(from, to)..
            < best_distance then
       best_distance=..
              distance(from)+d(from, to);
       best_i=i;
       best_j=j;
   end
  end
 end 
 from=visited(best_i);
 to=unvisited(best_j);
 previous(to)=from;
 distance(to)=best_distance;
 visited($+1)=to;
// remove node 'to' from unvisited,
// add it to the set visited
 unvisited(best_j)=[];
end

Figure 18.4. The Main Loop.
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At each iteration, the main loop considers all possible arcs from 
visited nodes to unvisited nodes.  The tentative total distance from 
the origin to the unvisited node is compute. The lowest such total 
distance is recorded (best_distance) as well as its source node 
(best_i) and its destination node (best_j).  We also keep track of the 
node from which we have reached the newly visited node.  The 
vector “previous” holds the index (best_i).  The closest unvisited 
node is then removed from the set of unvisited nodes and added to 
the set of visited nodes.  We run the algorithm until all nodes are 
visited.

// construct the path backwards
reverse_path=[destination];
prior=previous(destination);
while prior<>origin
 reverse_path($+1)=prior;
 prior=previous(prior);
end
reverse_path($+1)=origin;

path=reverse_path($:-1:1);
disp("shortest path");
disp(path);
disp("distance");
disp(distance(destination));

Figure 18.5. Constructing the Shortest Path.

When the main loop terminates, we have collected all the 
information needed to construct the shortest path.  The vector 
“previous” gives the node from which we have reached a given node.
Starting from the destination, we work backwards to construct the 
shortest path.  The indices, working backwards, are stored in the 
vector “reverse_path”.  This needs to be reversed to find and report 
the shortest path in the forward direction.  The code terminates by 
reporting the shortest distance to the destination and the path by 
which to achieve this distance.

4. Exercises
1. Run the code for different distance matrices and different number 

of cities.

2. Generate random symmetric distance matrices and run the 
algorithm.
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3. Generate random non-symmetric distance matrices and run the 
algorithm.

4. Run several random examples and plot average execution times 
versus the number of nodes, N.

5. Project Management involves a set of project stages that have a 
precedence relationship.  The network model is similar to the 
example given in this chapter.  However, the arcs are directed to 
indicate the precedences.  The nodes represent the project stages.
The arcs lengths are the time it takes from one project stage to the
next. The project has an origin, as in this case, and a destination. 
The destination stage represents project completion.  Unlike the 
example here, the project terminates after all stages are 
completed.  The time to complete the project is thus the length of 
the longest path from the source to the destination.  Modify the 
code to find the longest path, rather than the shortest one.
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XIX. RECURSIVE NETWORK ALGORITHMS: FIND A PATH
Recursion is a powerful conceptual and practical concept.  Simply 
stated, a function is recursive if it calls itself. Rather than a lengthy 
discussion, let us illustrate recursion with an example.  Suppose you 
want to write a function that returns the factorial of a nonnegative 
integer.  The following function is a straightforward implementation.

function nFact=getFactorial(n)
 nFact=1;
 for i=1:n
  nFact=i*nFact;
 end
endfunction

Figure 19.1. A Function to Compute Factorials.

The function implements a loop from 1 to the given integer n, and 
multiplies the series of number, 1,2,...n to find the factorial.  Now, 
consider the following implementation.

function nFact=getFactorialRecursive(n)
 if(n<=2) then
     nFact=n;
    else
     nFact=n*getFactorialRecursive(n-1);
 end
endfunction

Figure 19.2. A Recursive Function to Compute Factorials.

The function in Figure 19.2 is a recursive function, since it calls itself. 
The logic is elegant.  When the factorial of n is to be computed, if n is
less than or equal to 2, then the factorial is simple n.  Otherwise, the 
factorial of n is n times (n-1)!.  In order to compute (n-1)!, the 
function calls itself.  Thus the recursion.

If recursion appeals to you, then you have a good sense of 
engineering intuition.  The advantages and disadvantages of both 
these approaches is an interesting topic of computer engineering, 
albeit outside the scope of our elementary textbook.

1. Find A Path From Source to Sink
We now use recursion in a more demanding application.  Consider a 
network with undirected arcs through which there is a flow of given 
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capacity.  For example, this could be a road network, where the 
capacity denotes the number of vehicles that can travel through that 
arc in an hour.  We use a “from-to”-type matrix to define the arc 
capacities.  Element (i,j) of the capacity matrix is the capacity on the 
arc that goes from node i to node j.  Note that if the arcs are 
undirected, then the capacity matrix will be a symmetrical matrix.  If 
an arc does not exist between the nodes, then the corresponding 
capacity is simply 0.

The arc capacities are written as a matrix.  Consider, for example, 
the following capacity matrix.

// capacity matrix (undirected/symmetric)
capacity=[  0    10    31     0     0     0;
           10     0    22    24    13     0;
           31    22     0     0    37     0;
            0    24     0     0    13    34;
            0    13    37    13     0    12;
            0     0     0    34    12     0];

Figure19.3. The Capacity Matrix.

The rest of the code relies on a single recursive function.  Before we 
discuss the function, let us present the code.

origin=1;             // origin node
destination=6;        // destination node

visited=[origin];     // visited nodes

// unvisited nodes
unvisited=[];     // unvisited nodes
for i=1:N 
 if(i<>origin) then 
//     unvisited($+1)=i;
     unvisited=[unvisited,i];
 end
end

path=getPath(visited, unvisited,..
                       capacity, destination)

if(path($)==destination) then 
  disp("path:");
  disp(path);
else
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  disp("path not found!");
end

Figure19.4. The Main Code.

As seen, the code relies on the function getPath() to actually find a 
path from the origin to the destination.  The code defines the origin 
and the destination as nodes 1 and 6, respectively.  We make use of 
two vectors, namely “visited” and “unvisited”.  These vectors 
partition the set of nodes.  These vectors are initialized before we call
getPath().  The vector “visited” initially includes only the origin, and 
the vector “unvisited” contains all nodes except the origin.

The function getPath() takes as arguments these two vectors, the 
capacity matrix, and the destination node.  It returns the node 
indices of the path from origin to destination as a vector.  The 
function is now given below.

function path=getPath(head, unvisited,..
                                   cap, dest)
 path=head;
 from=head($);
 for i=1:length(unvisited)
     to=unvisited(i);
     if(cap(from,to)==0) then continue; end
     if(to==dest) then
         path=[head,to]; // path found
         break;
      else
       newHead=[head,to];
       newUnvisited=unvisited;
       newUnvisited(i)=[];
       path=getPath(newHead, newUnvisited,..
                                                                   cap, dest);
       if(path($)==dest) then break; end
     end // if
 end
endfunction

Figure19.5. The Function getPath().

The function takes a partial path, named “head”, that starts from the
origin.  Any node that is not in the path is in the set “unvisited”.  The 
capacity matrix and destination nodes are also specified.  The 
function simply goes through the unvisited nodes and tries to append
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it to the partial path.  These unvisited arcs are named “to” in the 
code.  The last node in the partial path is named “from”.  If the 
capacity of the arc (from, to) is zero, then the loop simply continues.  
In this case, the arc (from, to) does not exist, since the capacity is 
zero.  If however, the arc exists, it is appended to the partial path. 
This augmented partial path is named “newHead”.  Similarly, a new 
vector (newUnvisited) of unvisited nodes is formed, and the node 
“to” is removed from this vector.    If the node “to” is the destination 
node, we break out of the loop, since the path is now found.  
Otherwise, with a new partial path and a new vector of unvisited 
nodes, the function calls itself, and thus invokes a recursion.  Again, 
if the end of the returned path is the destination, we are done.  We 
break out of the loop.  If not, we try another node as the “to” node 
and repeat.

You may have noticed that at the beginning of the function, we set 
path=head.  This is done, so that, if no path is found, the function 
return value would be undefined.  This way, the function returns the 
partial path.  It is up to the calling program to check if the path 
terminates at node “destination”.

2. Exercises
1. Write a small program and implement the factorial functions given 

at the beginning of this chapter.

2. Change the capacity matrix and run the code.  Also try a network 
where there is no path from the origin to the destination.  Does the
code run as intended?

3. Modify the function getPath() so that besides the path, it returns a 
Boolean variable which indicates whether or not a path has been 
found from the origin to the destination. 

4. (Difficult) Write a program that finds a path from the origin to the 
destination but without the use of recursion.  Compare the two 
versions, with and without recursion.  Discuss the benefits of each 
approach.
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XX. NETWORK MODELS: MAX FLOW
This chapter builds upon the previous chapter.  We will use the code 
developed in the previous chapter to find the maximum possible flow
from the origin to the destination.  The method is referred to the 
Ford-Fulkerson algorithm in the literature.  The idea is rather simple.  
We try to find a path, as in the previous chapter, from the origin to 
the destination.  If such a path exists, we find the maximum flow 
along that path.  As expected, the maximum flow is the minimum of 
the arc capacities along the path.  We then remove the flow along 
the path from the capacities of the arcs on the path.  A path with 
positive flow is called an “augmenting path”.  We repeat until no 
further augmenting paths exist.

1. Support Functions
In addition to the function getPath() discused in the previous chapter,
we make use of two other functions.  The function getPathMaxFlow() 
takes the vector path whose elements are the indices of the nodes 
on the path, and the capacity matrix. The function traverses the path
and returns the minimum capacity of the arcs on the path.  Clearly, 
this is the maximum amount of flow we may put through the given 
path.  The implementation is rather straightforward.

function flow=getPathMaxFlow(path, capacity)
 flow=%inf;
 from=path(1);
 for i=2:length(path)
  to=path(i);
  if(capacity(from, to)<flow) then
   flow=capacity(from, to);
  end;
  from=to;
 end
endfunction

function reducedCapacity =..
     getReducedCapacity(path, flow, capacity) 
 reducedCapacity=capacity;
 from=path(1);
 for i=2:length(path)
  to=path(i);
  reducedCapacity(from, to) = ..
                    capacity(from, to)-flow;
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  reducedCapacity(to, from)=reducedCapacity(from, to);
  from=to;
 end
endfunction

Figure 20.1. The Support Functions.

The next function updates the capacities of the arcs along a given 
augmenting path.  The function getReducedCapacity() takes the 
vector “path”, the “flow” by which the capacity matrix is to be 
modified, and the capacity matrix.  It simply reduces the capacities 
of the arcs along the given path by the amount “flow”.

2. The Main Program
The main program is given below. It consists of a loop that identifies 
an augmenting path, finds the maximum flow through that path, and 
updates the capacity matrix to reduce the capacities of the arcs 
along the augmenting path by the amount of flow.  The loop runs 
until no further path from the origin to the destination is found.

// --- main loop ---
maxFlow=0;
found=1;
while(found)
 visited=[origin];
 unvisited=[];
 for i=1:N
  if(i<>origin) then 
    unvisited=[unvisited,i];
  end
 end

 path=getPath(visited, unvisited,..
                                                  capacity, destination);
 found=(path($)==destination);
 if(found) then
     flow=getPathFlow(path, capacity);
     maxFlow=maxFlow+flow;
     capacity=getReducedCapacity(path,..
                                                             flow, capacity); 
 end
end
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disp("Max flow:")
disp(maxFlow);

Figure 21.1. The Main Program.

The flow along the augmenting paths are cumulatively added to the 
value maxFlow, which is displayed at the end.

3. Exercises
1. Modify the main loop to display each augmenting path and its 

maximum flow.

2.  Is it always possible to increase the maximum flow through a 
network by increasing the capacity of just one arc?  Experiment 
and explain your findings.
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XXI. LINEAR PROGRAMMING
Linear Programming is perhaps the best known modeling tool in 
optimization.  Since its inception in the mid 50s, Linear Programming,
or LP as it has come to be known, was responsible for much of the 
CPU time of the mainframes.  The main concepts are easily 
demonstrated by an example.

Suppose we want to make two different types of cookies.  The main 
ingredients in both types is essentially the same, albeit at different 
proportions.  The following table shows how much of each ingredient,
by weight, comprises each type of cookie.

Cookie 1 Cookie 2 Price Available

Sugar 3 kg 5 kg 2 TL/kg 260 kg

Butter 4 kg 3 kg 8 TL/kg 200 kg

The table also gives the cost of each ingredient and the available 
amounts on hand.  Cookie 1 sells for 118TL per batch, and Cookie 2, 
for 106 TL per batch.  How many batches of each type of cookie 
should the bakery make in order to maximize its profit?

1. The LP Model
We formulate the problem as an LP model.  The following decision 
variables are defined.

X1: Number of batches of Cookie Type 1 to be baked

X2: Number of batches of Cookie Type 2 to be baked

X1 and X2 are called the decision variables of the LP.  The objective is
to maximize profit.  The revenue is simply,

R=118*X1 + 106*X2.

The cost of the ingredients is computed as follows.

C=2*(3*X1+5*X2) +8*(4*X1+3*X2).

The objective is to maximize the profit (Z).  Specifically, 

Z=R-C=(118-6-32)*X1 + (106-10-24)*X2.

Simplifying the objective function, and desiring to maximize it, we 
write,

max Z=80*X1 + 72*X2

There are two constraints, namely the availability of the two 
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ingredients.

3*X1+5*X2 <= 260

4*X1+3*X2 <= 200

Each of the constraints above is associated with an ingredient.  The 
first constraint, for instance, is related to the available sugar (260 
kg).  The left hand side of the inequality is the amount of sugar to be 
used, if we produce X1 and X2 batches of the types.  The amount of 
sugar used cannot exceed the available amount on hand.  The 
remaining constraint is for butter.

In addition, we write two non-negativity constraints.

X1 >= 0

X2 >= 0

These two constraints are needed to prevent the number of batches 
to be baked from assuming negative values.

2. A Naive Approach
A good engineer who has never seen an LP formulation may first 
consider a brute-force approach.  Considering the available sugar, we
have enough to produce 260/3 (fewer than 90) batches of Cookie 1, 
and 260/5 (fewer than 60) batches of Cookie 2.  Similarly, the 
available butter limits us to 50 batches of Cookie 1 and fewer than 
70 batches of Cookie 2.  So, a most naïve approach would be to try 
all combinations of (X1, X2) for X1 and X2 in the range [0, 100].  For 
each combination, we would first check if the combination is feasible.
That is, if the specified number of batches can be baked with the 
available ingredients.  If feasible, we would compute the objective 
function value.  Then, among all feasible solutions, we would pick the
one with the highest objective function value.

The code is shown below.

function result=feasible(a, b)
 result=0; 
 if a < 0 then return; end
 if b < 0 then return; end
 if 3*a+5*b > 260 then return; end
 if 4*a+3*b > 200 then return; end
 result=1; 
endfunction

function result=objective(a, b)
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 result=80*a+72*b;
endfunction

Z_grid=meshgrid(0:100,0:100);
best_X1=0;
best_X2=0;
best_Z=0;
for X1=0:100
    for X2=0:100
      if ~feasible(X1, X2) then continue; end;
      Z=objective(X1,X2);
      if Z>best_Z then
          best_Z=Z;
          best_X1=X1;
          best_X2=X2;
          end
    Z_mesh(X1+1,X2+1)=Z;
    end
end

printf("X1:%d X2:%d Z:%d\n",..
             best_X1, best_X2, best_Z);

mesh(Z_mesh);

Figure 21.1. The Code

Following the practice of structuring our code with the use of 
functions, we separate the feasibility check and the computation of 
the objective function value.  These two are implemented as 
individual functions.  This structure also makes the code somewhat 
easier to modify in the future.  The main loop simply iterates X1 and 
X2.  First we check the feasibility of the (X1, X2) combination.  If 
feasible, we compute the objective function value.  The best 
objective function value as well as the X1 and X2 that give this 
objective function value are kept.  The code prints the best solution  
upon termination.

X1:20 X2:40 Z:4480

Figure 21.2. The Output

The solution indicates that we must produce 20 batches of Cookie 1 
and 40 batches of Cookie 2.  This combination yields the highest 
profit, 4480 TL.
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The graph shows how the objective function behaves over the 
feasible solution space.

Figure 21.3. The Objective Function Value over the Solution Space.

3. A Smarter Approach
As discussed, a good engineer is expected to solve the problem, 
albeit in a naïve brute-force manner.  This is a good illustration for 
the motivation for this book: develop computational skills to solve 
practical problems and gain further insights.  There are insights we 
could develop from this exercise.  In any case, LP will be covered in 
some depth in almost all industrial engineering curricula.  It is seen 
that if there is a solution, it should occur on the boundary of the 
feasible solution space.  Armed with this information, instead of 
checking all combinations of the decision variables, we could limit 
our checks to the extreme points.  The extreme points are where the 
inequalities hold tightly.  We have four inequalities and two unknown 
decision variables.  

3*X1+5*X2 <= 260

4*X1+3*X2 <= 200

X1 >= 0

X2 >= 0

When we force the inequalities to hold tightly, we have an equation 
rather than an inequality.  Any two equations of the four would 
uniquely determine the values of the decision variables X1 and X2.  
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For example, the two inequalities

4*X1+3*X2 <= 200

X1 >= 0

become

4*X1+3*X2 = 200

X1 = 0

which yield the solution X1=0 and X2=200/3=66.67.  There are a 
total of four-choose-two or six different ways we can solve for the 
decision variables.  Each one of these solutions would be at an 
extreme point.  In matrix form, we have an overdetermined set of 
linear equations.

[
3 5
4 3
1 0
0 1

] [X1
X2]=[

260
200
0
0

]
The coefficient matrix is a 4-by-2 matrix.  The right-hand-side vector 
is of size 4.  We can solve for the decision variables by considering 
any two rows of the coefficient matrix, and the corresponding 
elements in the right-hand-side vector.

However, not all extreme points need to be feasible.  We still must do
a feasibility check for potential solutions.  The following code 
illustrates the approach.  We define the coefficient matrix (c) and the 
right-hand-side vector (rhs).  Two nested loops pick out rows of the 
coefficient matrix and place them in matrix B.  Similarly, the 
corresponding elements of the right-hand-side vector are placed in 
vector R.  The reduced system of linear equations thus has two 
equations in two unknowns.

clc
clear

c=[3, 5; 4, 3; 1, 0; 0,1];
rhs=[260, 200, 0, 0];

function result=feasible(a, b)
 result=0; 
 if a < 0 then return; end
 if b < 0 then return; end
 if 3*a+5*b > 260 then return; end
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 if 4*a+3*b > 200 then return; end
 result=1; 
endfunction

function result=objective(a, b)
 result=80*a+72*b;
endfunction

N=size(rhs,'c');

best_X1=0;
best_X2=0;
best_Z=0;

for i=1:N-1
  for j=i+1:N
      B(1,:)=c(i,:);
      B(2,:)=c(j,:);
      R(1)=rhs(i);
      R(2)=rhs(j);
      // solve the set of linear equations
      X=(B^-1)*R;
      disp(X);
      if ~feasible(X(1),X(2) then continue; end
      Z=objective(X1,X2);
      if Z>best_Z then
          best_Z=Z;
          best_X1=X1;
          best_X2=X2;
          end
  end
end

printf("X1:%d X2:%d Z:%d\n",..
               best_X1, best_X2, best_Z);

Figure 21.4. Scanning the Extreme Points.

The solution is obtained by inverting the matrix B and multiplying 
with the (reduced) right-hand-side vector.  This is not the best 
approach when the size of the matrix is large, but in this case with 
only two unknowns, it can be justified for its simplicity.  Each solution
is checked for feasibility, and the main loop keeps track of the best 
solution, as done in the previous approach.

The approach gives the same solution X1=20 X2=40 Z=4480.
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4. Exercises
1. If we had one more kg of sugar, how much more profit could we 

have made?  This is called the marginal cost of sugar.  We would 
be willing to pay up to this much for a kg of sugar, since we would 
still be making a profit, but not more than that.  Repeat the 
exercise for butter.

2. How much must the price of a batch of Cookie 1 be changed for 
the the solution (20 batches of Cookie 1 and 40 batches of Cookie 
2) not to be the optimum?   Give a range for the price of a batch of
Cookie 1 and another range for Cookie 2.  Such studies are called 
sensitivity analysis.  It reveals how sensitive the solution is to the 
model parameters.

3. The code given for the second approach works with two nested 
loops, one for each row of the coefficient matrix of the reduced set
of equations.  How would you generalize the code for the cases 
where the number of decision variables may vary?
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XXII. CONSTRAINED NONLINEAR PROGRAMMING
Nonlinear programming deals with finding the values of the decision 
variables at which a nonlinear objective function attains its maximum
or minimum.  Sometimes there are constraints which limit the 
feasible region of the space spanned by the decision variables. We 
have seen such a case while discussing locating an airport among a 
set of cities so as to minimize the total length of roadways to be 
constructed.  Here, we add a constraint to the location problem.

Consider four cities with coordinates (xi, yi) for i=1, 2, 3, 4 located 
within a square region.  Let the city coordinates xi, yi be in the range 
[1, 100].  Let there be a river that diagonally passes through the 
region.  The river is on the line y=100-x.  Similar to the airport 
location problem, we want to build a port on the river while 
minimizing the total length of the roadways to each of the cities.

1. The Code
The code consists of a function subroutine and a loop.   The function 
is the same as the one we used for the airport location problem.  It 
simply computes the total distance from a given point to all four 
cities.

The main loop iterates through the X coordinate, from 1 to 100.  At 
each iteration, we find the Y coordinate, and then call the function to 
compute the total road length needed if the port is to be laced at this
location.  The loop also keeps track of the best total road length so 
far.  When the loop terminates, we have the coordinates of the best 
location.

clc
clear

// Four planar points, coordinates in the
// range of [1, 100]
city_x=[10, 80, 35, 36];
city_y=[42,  9, 91, 19];
// numerically find a point to place a new
// port on the river (y=100-x), such that 
// the total distance from the cities to
// the port is minimized.

// f(a,b) gives the total distance from
// points (city_x, city_y) to (a,b)
function [d]=f(a, b)
 d=0;
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 for i=1:4
  d=d+sqrt((a-city_x(i))^2+(b-city_y(i))^2);
 end
endfunction

bestZ=400;
bestX=0;
bestY=0;

for x=1:100
 y=100-x;
 Z(x)=f(x,y);
 if Z(x)<bestZ then
   bestX=x;
   bestY=y;
   bestZ=Z(x);
   end
end

plot(Z);
xtitle('X coordinate');
xlabel('km');
ylabel('total road length (km)');

printf("best lcation: (%d,%d)\n", bestX, 100-bestX);
printf("min length  :  %d\n", bestZ);

Figure 22.1. Seeking the Best Port Location.

The code prints out the best location for the port and the 
corresponding total road length.

best location: (48,52)
min length   :  169

Figure 22.2. Code Output.

The code plots t

he total road length as a function of the X coordinate.  It is observed 
that the objective function value is somewhat sensitive to the 
location.  Thus, searching for the best location seems to be worth the
effort. 
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Figure 22.3. Total Road Length (objective function value) as a
Function of the X Coordinate of the Port.

2. Exercises
1. Note that the city coordinates we used are the same as the ones 

we used for the airport location problem.  The airport could be 
built anywhere in the region, while the river port must be on the 
river.  That is, the airport optimization was unconstrained, while 
the river port location is constrained to be on the river.  Compare 
the two solutions.

2. Add a few more lines to the code to plot the river and the cities. 
Also show where the location of the port which minimizes the total
road length, as shown below.
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 Figure 22.4. Cities (blue crosses), the River (green line),
and the Port Location (red circle).

3. Suppose we have certain regions of the river which are deemed 
inconvenient for the port, say due to soil conditions or river width. 
These will introduce further constrains on the problem.  How would
you handle such additional constrains?

4. The constraint we used is a linear constrain.  That is, the port 
location being limited to coordinates where y=100-x is a linear 
one.  How would you handle nonlinear constrains? For example, 
consider the case x2+y2<802?
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XXIII. MONTE CARLO ANALYSIS
Sometimes it becomes difficult to compute a given phenomenon, for 
the lack of a conceptual attack on the problem.  It is often the case 
that we try to build as much insight as possible in search of a greater
understanding.  These initial trials are therefore quite important.  A 
good engineer should possess the skills to quickly generate 
computational cases and glean insights from them.

In certain fortunate cases, an initial solution may present itself 
through analysis involving randomness.  A classical textbook 
example is in computing the numerical value of π.  It is known that 
the area of a disk with a radius of r is πr2.  Consider a unit square 
encapsulating a quarter of a disc as shown below.

Figure 23.1. Computing the Value of π.

Here, we have a quarter disc inscribed within a unit square.  If we 
generate random points in the unit square, it is rather 
straightforward to test if the random point is also within the disk.  Let
the point (x,y) be randomly generated.  That is, we generate a 
random x in the interval [0, 1], and similarly a y in the same range.  
We make sure that x and y are statistically independent.  Then, the 
point (x,y) will be inside the disc if

x2
+ y2

≤1 .
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The fraction of the points within the disc approximates the fraction of
the area of the unit square covered by the disk.  Then, 4 times the 
fraction will approximate the area of the disc. Since the radius of the 
disc is 1, then, 4 time the fraction will also serve as an approximation
to  π.

1. The Code
The code given below is rather uncomplicated.  In a sense, this is the
beauty of the Monte Carlo method.  It provides an uncluttered attack 
on the problem at hand.

clc
clear

RunLength=100000;
Count=0;

for i=1:RunLength
 x=rand();
 y=rand();
 if(x^2+y^2<=1) then Count=Count+1; end
end

disp(4*Count/RunLength);

Figure 23.2. The Code.

As expected, the output gives values close to π.  One may increase 
the run length to seek better approximations.

2. Exercises
1. Change the run length and observe its effect on the quality of the 

approximation.  Try run lengths of 100, 1,000, 10,000, 100,000, 
and 1,000,000.  For each case, make 10 runs and compute the 
average.  Plot these results to show the effect of the run length on 
the accuracy of the approximation.

2. Use the Monte Carlo method to compute the integral of Sin(x) for 
the interval [0,  π].  That is, generate random points in the 
rectangle (0,0) to (π, 1).  Then find the fraction of points under the 
curve Sin(x).
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3. What is the expected distance between two random points in a 
unit square?  What about in a unit equilateral triangle ot a unit 
circle?
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XXIV. STATISTICAL FORECASTING
Statistical forecasting tries to estimate future values of a time series 
from information extracted from the past values.  It differs from other
forecasting methods, such as the so-called Delphi Method, as it relies
on a statistical evaluation and modeling of the time series.

As an example, consider the rather fortunate company, the demand 
for whose product seems to display a constant upward trend.  The 
monthly demand in tons is plotted over the past 30 months.

Figure 24.1. Monthly Demand in Tons.

The question on hand is “What will demand be for the next month?”  
We present two rather elementary techniques often used in industrial
engineering.

1. Moving Averages
The Moving Averages (MA) method simply takes the average of a 
window of past values.  If the window width is 10, for example, we 
average the most recent 10 values and use this average as the 
estimate for the next value in the time series.  The wider the window,
the less sensitive it is to noise.  This is because, any noise 
superimposed on the time series will tend to cancel out in the long 
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run.  However, as the window widens, so does the estimate become 
less agile.  That is, it takes a longer time to catch up with any sudden
changes in the time series.

clc
clear
d=[ 9.68 12.99 15.14 10.32 15.86..
   12.75 18.98 17.26 21.15 20.32..
   21.76 22.94 24.38 24.88 24.99..
   23.86 22.22 29.56 29.90 32.11..
   34.84 32.85 30.18 38.36 38.37..
   38.48 39.20 39.13 42.95 43.75 ];

w=3;

function e=MovingAverage(s, n, k)
    count=min(n, k);
    e=0;
    for i=1:count
     e=e+s(n-i);
    end
    e=e/count;
endfunction

// moving average with window w
my=[];
mx=[];

for j=w+1:size(d,2)
    mx($+1)=j;
    my($+1)=MovingAverage(d, j, w);
end

plot(d')
xtitle('Monthly Demand');
xlabel('month');
ylabel('tons');

plot(mx, my, 'r')
legend(['demand (tons)'..
           'moving average (3) forecast']);

Figure 24.2. The Code for Moving Averages.

The code centers around the function MovingAverage(s, n, k), which 
computes the moving average forecast from the series s, using up to 
its first n terms.  The last parameter k is the width of the moving 
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average. The number of trailing elements to average is named 
“count” which is the minimum of k and n.  The function simply 
accumulates the series elements in e, and then divides the sum in e 
by count.

The main loop computes the moving average estimates, from w+1 to
the end of the data series, where w is the width parameter of the 
moving average.  The estimates and the corresponding month values
(indices) are stored in matrices my and mx, respectively.  This way, 
as we plot (mx,my), the graph starts from the first value in mx, not 
from the origin.  The code plots (mx,my) in red, also marking the 
data points with small circles (the letter 'o').  The resultant output 
plot is given below.  

Figure 24.3. Moving Average Estimates (Window w=3).

Note that the estimate usually lags the data, since past data points 
are averaged.  Since there is a general increasing trend, past points 
usually have a lower value than the next data point.

2. Exponential Smoothing
Another quite popular forecasting method is the Exponential 
Smoothing (ES) method.  Here, the forecast for the next data point is 
estimated as a weighted sum of the last data point and the last 
estimate.
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^dn+1=αdn+(1−α) d̂n

The circumflexes (the hats above the d's) indicate that they are 
estimates.  The series {dn} is observed up to period n.  The next 
estimate blends the last observation and the most recent estimate 
with parameter α, chosen between 0 and 1.  The larger the α, the 
more emphasis on the most recent data point.  Likewise, the smaller 
the α, the more emphasis on the most recent estimate.  Thus, as  α is
increased, the estimate becomes more sensitive to the data.  It also 
becomes more affected by any noise in the data.  Contrarily, as  α is 
decreased, the estimate becomes less sensitive to noise.

We next present the code that implements ES on the same data set.  

clc
clear

d=[ 9.68 12.99 15.14 10.32 15.86..
   12.75 18.98 17.26 21.15 20.32..
   21.76 22.94 24.38 24.88 24.99..
   23.86 22.22 29.56 29.90 32.11..
   34.84 32.85 30.18 38.36 38.37..
   38.48 39.20 39.13 42.95 43.75 ];

alpha=0.5;

function e=ExponentialSmoothing(s, n, a)
 e=s(1);
    for i=2:n
     e=a*s(i)+(1-a)*e;
    end
endfunction

// exponential smoothing
ey=[];
ex=[];
for j=2:size(d,2)
    ex($+1)=j;
    ey($+1)=ExponentialSmoothing(d, j, alpha);
end

plot(d')
xtitle('Monthly Demand');
xlabel('month');
ylabel('tons');
legend(['demand (tons)']);
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plot(ex, ey, 'ro-')
legend(['demand (tons)' 'exponential smoothing(0.5) 
forecast']);

Figure 24.4. The Code for Exponential Smoothing.

The code is almost the same as the one given for MA.  Once again, 
we use a function to compute the next estimate. Here 
ExponentialSmoothing(s, n, a) computes the next estimate given the 
series s, up to its n-th element.  The estimate is thus for the (n+1)-st 
element of the series s.  The last parameter a is the weight (alpha).  
The output plot shows the original time series and the ES estimates, 
plotted in red with small circles indicating the data points.

Figure 24.5. Exponential Smoothing Estimates (weight α=0.5).

3. Exercises
1. Find suitable data and run both forecasting methods.  For 

example, you may use daily average temperatures or the travel 
time to go to school as your data set.

2. Change the MA and ES parameters in the given programs and 
observe their effects.
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3. Both MA and ES are popular forecasting methods.  What are the 
contrary advantages and disadvantages of the two forecasting 
methods?  What are common advantages and the common 
disadvantages?

4. Try both methods on data that show seasonality.  For example, 
beach attendance or ice cream sales are higher in the summer 
months.  Is either method better in detecting seasonality?
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XXV. WORKING WITH NOISY DATA
Measurement is an essential part of engineering.  Accordingly, 
almost all engineering tasks require some form of data collection and
processing.  Measurements more often than not come with 
embedded noise.  Data from human systems usually come with an 
added level of uncertainty.  Suppose, for example, we observe 
successive arrivals to a supermarket checkout counter.  The typical 
way to model the arrival stream is by treating the inter-arrival times 
as random variables.  If we further assume that inter-arrival times are
independently and identically distributed, then we need specify only 
one distribution function.  Suppose we measure the inter-arrival 
times of 1000 successive customers and obtained the following 
histogram.

Figure 25.1. Histogram of Inter-arrival Times.

Moreover, let the average of the 1000 inter-arrival times be 10.03, 
and standard deviation 98.50.

1. Representing Data
As depicted above, drawing a histogram is a good initial step towards
representing and understanding the properties of the random 
variable.  A histogram may suggest the a suitable distribution to be 
used to model the random variable.  Further, if we compute a few 
statistics, such as the average and the standard deviation, we may 
also start assigning distribution parameters.

For the data shown in the histogram in Figure 25.1, we compute a 
coefficient of variation=0.99.  From the average and coefficient of 
variation, along with the general shape of the histogram, we may 
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justifiably assume that the inter-arrival times are exponentially 
distributed with rate 1/10, that is, the reciprocal of the average.

2. Drawing Histograms
If need be, you may write a short function to draw the histogram.  
However, since histograms are frequently used, most engineering 
computation software has built-in functions to draw histograms.  In 
this example, we will use the Scilab function histplot(). In its most 
elementary use,the function takes two parameters, the number of 
classes (n) and a vector of values (y), as histplot(n, y).  The number 
of classes determines how many intervals are to be used.  The 
documentation reveals that the default behavior of histplot() 
normalizes the frequencies (number of occurrences) of each interval. 
If you want to display the count, that is, the number of occurrences 
within that interval, then a third parameter is needed, as histplot(n, 
y, normalization=%f).

The following example illustrates the use of the function.

clc
clear
// RNG exponential distribution

fLambda=0.10;
nTrials=1000;
nClasses=10;

for n=1:nTrials
 y(n) = grand(1, 1, "exp", 1.0/fLambda);
end

 clf(1);
 scf(1);
 histplot(nClasses, y);
 xtitle('histogram of inter-arrival times');
 xlabel('inter-arrival time');
 ylabel('frequency');

Figure 25.2. Drawing Histograms.

The code uses the Scilab function grand() to generate exponentially 
distributed random variables and save them in the vector y.  The 
function histplot() is called to draw the histogram.

The data and the histogram given in the previous section was 
actually generated by a similar program.
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3. Exercises
1. Modify the code to generate uniformly distributed random 

variables and draw their histogram.

2. Modify the code to generate normally distributed random variables
and draw their histogram.

3. Generate random variables with positive and negative skewness 
and observe differences in their histograms.
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XXVI. THE LAW OF LARGE NUMBERS
In layman's terms, the law of large numbers simply states that the 
computed average of a sample drawn from a given distribution will 
converge to the distribution mean as the population size increases.  
This is an important theoretical point.  It guarantees that the sample 
average is an unbiased estimate for the distribution mean.

We now attempt to check this assessment by computing sample 
averages and observing if they indeed converge to the distribution 
mean.  Interestingly, here we use computation in a qualitatively 
different way.  We use computation to verify a theoretical point.  
Many times, when understanding an engineering phenomena, before
we make claims and try to justify them, we rely on numerical cases 
to develop our understanding, to gain insights, and to hone our 
instincts.

1. The Code
Consider the following code that uses the Scilab function grand() to 
generate exponentially distributed random variables.  The 
distribution parameter fLambda is set to 0.50, which means that the 
expected value of the generated random variables will be 
1/0.50=2.0.

The code generates nTrials number of random variables.  The sum of 
the successive random variables are stored in the vector fSums.  
Similarly, the sample averages are stored in fAverages.  The code 
plots fAverages, which, if the law of large numbers holds, should 
converge to the mean (2.00).

clc
clear
// law of large numbers

fLambda=0.50;
nTrials=10000;
fSums(1) = grand(1, 1, "exp", fLambda);
fAverages(1)=fSums(1);

for n=2:nTrials
 fExpRN = grand(1, 1, "exp", 1.0/fLambda);
 fSums(n) = fSums(n-1)+fExpRN;
 fAverages(n)=fSums(n)/n;
end

 scf(1);
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 plot(fAverages);
 xtitle('Averages (Exp RNG using grand())');
 xlabel('trials');
 ylabel('sample average');

Figure 26.1. The Code.

The code output is a graph showing how sample averages change as 
a new random variable is added to the sample.

Figure 26.2. The Output.

As expected, the sample average converges toward the mean (2.00).
Interestingly, the convergence rate is somewhat slow.  Although the 
sample average is practically within 10 percent, it does not quite 
settle until the sample size if a few thousand.  Such observations 
provide important engineering insights.

2. Exercises
1. Modify the code to generate normally distributed random variables

with mean 10.  Try coefficients of variation of 0.5, 1.0, and 2.0. 
Observe the convergence rate in each case.  How does the 
coefficient of variation affect the rate at which the sample average
converges to the mean?

2. Repeat the experiments with uniformly distributed random 
variables.
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XXVII. THE CENTRAL LIMIT THEOREM
The central limit theorem is perhaps the cornerstone of statistics.  It 
goes a long way towards explaining why the normal distribution 
plays such a central role in statistics.  In a nutshell, the central limit 
theorem asserts that the distributions of sample averages converge 
towards the normal distribution.  That is, consider a sample of 
random variables drawn from any distribution.  Suppose we compute
the sample average.  Then, suppose we repeat this process of 
drawing a sample and computing its average.  The series of 
averages, themselves, may be regarded as random variables.  
Moreover, if the sample sizes are the same, these averages will have 
the same distribution.  The central limit theory says that the 
distribution of these averages will approach the normal distribution.

1. The Code
Once again, we use computation to test the validity of the central 
limit theorem.  This test, of course, is not meant to be proof.  Rather, 
the test is to provide numerical insights and hone our engineering 
instincts.

clc
clear

// central limit theorem

fLambda=0.50;
nSampleSize=100;
nTrials=1000;
nClasses=30;

for n=1:nTrials
    fSum=0;
    for k=1:nSampleSize
      fExpRN = grand(1, 1, "exp", 1.0/fLambda);
      fSum = fSum+fExpRN;  
    end

 fAverages(n)=fSum/nSampleSize;
end

 scf(1);
 histplot(nClasses, fAverages);
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 xtitle('central limit theorem');
 xlabel('averages');
 ylabel('frequency');

Figure 27.1. The Code.

As seen, the code generates samples of size 'nSampleSize' from an
exponentially distributed random variable with rate 
'fLambda'.  The sample averages are computed and store in 
the vector 'fAverages'.  The experiment is repeated for 
'nTrials' number of samples.  These parameters are defined
in the beginning, so that the code may be easily modified.
The code then draws a histogram of the averages.  We 
observe if the histogram resembles one that came from a 
normally distributed random variable.

Figure 27.2. The Histogram of Averages of Exponentially Distributed
Random Variables.

The histogram uses 30 classes (intervals).  The exponential 
distribution has a mean of 2.0, since its rate os 0.50.  Note that the 
averages are clustered around the mean (2.0).  The histogram looks 
like a normal distribution.

- 114 -



2. Exercises
1. Predict the effects of changing the code parameters.  Namely, 

what is the expected effect of changing the distribution rate, the 
sample size, or the number of trials?

2. Modify the code by altering the code parameters, as investigated 
in Exercise 1.  How well did the output match your predictions of 
Exercise 1?

3. Modify the code to generate samples of uniformly distributed 
random variables.  Repeat Exercise 1 and 2 with uniformly 
distributed random variables.

4. (Difficult)

Part 1.

In this chapter, we generated samples of exponentially 
distributed random variables, say X.  Let the rate of the 
exponential distribution be 'r', and the sample size be 'N'.  Let 
the sample averages be denoted as the random variable A.  
What are the mean and variance of the distribution of the 
averages, A?  Note that the mean of A is a function of the rate 
r, irrespective of the sample size N.  However, the variance of 
A is also a function of N.

Part 2.

Generate normally distributed random variables with the mean
and variance equal to those of A as obtained in Part 1.  Plot the
histogram of these normally distributed random variables.  
How much does this histogram resemble the one in Figure 
27.2?  What are your observations and conclusions?
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XXVIII. CURVE FITTING (SIMPLE AND MULTIPLE REGRESSION)
We all have seen a line fit through noisy data, such as depicted 
below.  Here, the class attendance of students and their final class 
grade are plotted.

Figure 28.1. Relationship Between Class Attendance and Grade.

The plot offers evidence that the more you come to class, the better 
your grade will be.  There is an implied model of a cause-effect 
relationship.  The grade is the outcome, or the effect.  The 
attendance rate is the cause that determines the effect.  Regarding 
this cause-effect model, the attendance is the independent variable, 
that is, the variable one may vary.  The grade is the dependent 
variable, that is, the effect of our attendance rate.  In other words, 
once the attendance is set, the outcome (grade) follows.

The line that is fit through the data points is thus considered a model
of this cause-effect relationship.  The model is a quantitative one – 
and engineers like quantitative, or numerical, models.  The model 
suggests that there is a linear relationship between the cause and 
the effect.  In fact, one may write this as a algebraic function.  Let 
attendance be denoted by X and the grade by Y.  The model may 
then be expressed as 
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Y=b0 + b1*X

where b0 is the intercept of the line, and b1 is the slope.  We call this 
a linear regression model, since the independent variables are 
combined in a linear fashion (multiplied by constants and added).  
Moreover, the model above is a so-called “simple” linear regression, 
since it has only one independent variable.  It is also possible to have
multiple independent variables, with a corresponding model, such as

Y=b0*X0 + b1*X1 + b2*X2 + b3*X3 + b4*X4 ...+ bk*Xk.

The above model is still linear in the independent variables (the X i) 
but there are more than one independent variable.  Such models are 
called multiple linear regression models.

You may have noticed that the above model has no explicit constant 
term.  The constant term may simply be implemented by selecting all
X0 terms as 1.

1. The Least-Squares Method
Once the model parameters, that is, the coefficients bi, are 
determined, the linear regression model gives a concise formula that 
numerically relates the size of the effect to the size of the causes.  
The “least squares method” provides an efficient technique to 
determine the model parameters.  Moreover, the method may be 
summarize in matrix form rather elegantly.  We place the dependent 
variables in a column vector Y, as given below.

Y=[
59.66
63.90
66.58
68.81
71.97
74.48
76.65
88.08
93.83
98.18

]
The corresponding independent variables are placed in a matrix as,
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X=[
1 44
1 51
1 55
1 62
1 64
1 71
1 76
1 83
1 86
1 94

]
Note that the first column of the matrix X is all 1s.  This follows the 
modeling convention

Y=b0*X0 + b1*X1

so that b0 is the constant term of the model.  The least squares 
method gives the parameters bi as the vector

B=((X'*X)^-1)*X'*Y;

B=[
b0

b1

⋮
bk

]=(XT X)
−1 XT Y

The method requires the inversion of a k-by-k matrix, where k is the 
number of model parameters.  In case of simple linear regression, 
this is a two-by-two matrix.

2. The Code
The following code computes the model parameters for the 
attendance-grade relationship discussed in the beginning of the 
chapter.  The data points and the fit is then plotted.

clc
clear

X=[
1    44;
1    51;
1    55;
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1    62;
1    64;
1    71;
1    76;
1    83;
1    86;
1    94;
];

Y=[
59.66
63.90
66.58
68.81
71.97
74.48
76.65
88.08
93.83
98.18
];

B=((X'*X)^-1)*X'*Y;

disp(B)

FIT=[];
for i=1:size(Y,1)
 FIT(i)=B(1)+X(i,2)*B(2);
end

scf(0) // create figure 0
clf(0) // clear figure 0
plot(X(:,2),Y,'bo')
plot(X(:,2),FIT,'r')
xtitle('attendance-grade relationship');
xlabel('class attendance (percent)');
ylabel('class grade (out of 100)');

Figure 28.2. The Code.

The code outputs the model parameters (i.e., the coefficients) as,

22.675913

0.7804386

Thus, we may now declare the quantitative cause-effect relationship 

- 120 -



of attendance and grades as

grade = 0.78*attendance + 23

You may noticed that we truncated the coefficients to two significant 
digits.  Given the sample size and various external factors, we are 
cognizant that our model is an approximation at best.  Thus, two 
significant digits are probably sufficient.  It would be meaningless to 
give these coefficients in 7 or 8 significant digits.  We may even 
simplify our findings as

grade = 0.8*attendance + 20

which would most probably be sufficient as well as easy to 
remember.

Also note that the model is a descriptive one.  It allows one to predict
the outcome given the inputs based on a statistical study of similar 
cases.  It does not provide an explanation for the cause-effect 
relationship.  In this sense, the regression model is by no means an 
end product, but a component of a general view of a cause-effect 
relationship.  After all, you may collect irrelevant data and still fit a 
curve through the data points.

As a final note, let us be reminded that not all fits are equally 
accurate.  How well the fit describes the data is the topic of 
regression analysis.  Here, by eyeballing the graph, we may be 
convinced that the fit is good enough to describe the data, since 
almost all points, although not exactly on the line, are nonetheless 
quite close to the fitted line.

3. Exercises
1. Collect data from your classmates on the distance and travel time 

from home to school.  Fit a line through the data that gives the 
travel time based on the distance.  Plot the data points and the fit.
Discuss how well the model explains the data.

2. Consider throwing a ball into the air and measuring how high it 
went, along with how long it took to land back on the ground.  Let 
H and T be the height and the time.  You will notice that a 
relationship between H and T is best given by a quadratic model, 
since the ball decelerates on its way up, and then accelerates 
falling back down.  Consider the modeling

H=b0*T0 + b1*T1 + b2*T2 

where T0 terms are 1s, T1 terms are the elapsed time, and the T2 
terms are the squared times (squares of the T1 terms).  Collect 
data (or use the data given below) and estimate the model 
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parameters.  How are the model parameters related to the 
gravitational acceleration?

Trial Time Height

1 1.05 2.78

2 1.58 6.23

3 2.09 10.92

4 2.57 16.55

5 3.14 24.67

- 122 -



XXIX. SIMULATING A SIMPLE QUEUE
The simplest queueing system is typified by customers randomly 
arriving at a server.  If the times between successive arrivals and the
service times are exponentially distributed, this system is referred to 
as an M/M/1 queue.  Here the letter 'M' refers to the memoryless 
property of the exponential distribution.  The two Ms indicate that the
arrival and the service processes are exponential, while the trailing 
'1' indicates that the system contains only one server.

Imagine a single check out line at a small store with a cashier.  
Customers come and the cashier checks out the customers.  The 
times between customers joining the line is assumed to be 
exponentially distributed.  So is the service times, that is, the time it 
takes the cashier to check out each customer, exponentially 
distributed.  Of course, these two distributions may have different 
rates.

The memoryless property of the exponential distribution is quite 
interesting.  When the inter-arrival times are exponentially 
distributed, this simply means that the expected remaining time to 
an arrival is independent of the time we have already waited for an 
arrival.  Thus, the process has no memory of how long we have 
waited so far for the next arrival.  The discrete counterpart is the 
geometric distribution.  Say, you toss a die until you get a '1'.  The 
expected number of tosses until the '1' arrives is 6, since the 
probability of tossing the '1' is 1/6.  Now, suppose that you have 
already tossed the die 3 times and that the '1' has not “arrived”.  The
expected number of times you need to toss the die until the '1' 
occurs is still 6, independent of the 3 tosses so far.  Thus, the process
has no memory of the 3 tosses already completed.  The process is 
memoryless.

There is a close relationship between the exponential distribution and
the geometric distribution.  The latter may be considered as the 
limiting continuous case of the former.  Specifically, the probability of
an arrival in the next Δ t time units is λ Δ t  where λ is the rate 
of the exponential distribution.  This property may be viewed as the
discretization of the continuous distribution.  We will use this 
property to simulate the M/M/1 queue.

The preceding sentence used the word “simulation”.  A simulation is 
like a video game.  You model a dynamical system by a set of states 
and actions, and then let the computer numerically go through the 
steps that correspond to the evolution of the system over time.  
Meanwhile, the code keeps track of performance measures.  Here we
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will record how much the server is idle and the number of customers 
in the system as indicators of the system performance.

1. A Specific Queue
Consider an M/M/1 queue with an arrival rate of rArrive=10 
customers per hour and a service rate of rService=20 customers per 
hour.  Let us select our Δ t to be hDeltaTime=0.001 hour.  Then, 
the probability of an arrival in the next Δ t is

pArrival=hDeltaTime*rArrive.

Similarly we define,

pService=hDeltaTime*rService.

Defining the parameters explicitly in the beginning of the code is 
good software practice.  This way, you can change the system 
parameters easily and repeat the runs.  If the code is well organized, 
you can change the parameter settings at one well-defined line in 
the code.

The run time and the number of periods (of duration Δ t ) are 
likewise defined.  The code runs the clock from 0 to the specified run 
time in Δ t time steps, called periods.  This approach amounts to a
continuous-time simulation of the system.  As the simulation 
progresses, the code keeps track of the number of customers in the 
system and the number of periods the server is idle.

clc
clear

rArrive =10;     // rate: arrival per hour
rService=20;     // rate: service completion
hDeltaTime=0.001; // hour
pArrive=hDeltaTime*rArrive;   // prob arrival
pService=hDeltaTime*rService; // prob service

nRunTime=100;    // hours
nNumPeriods=nRunTime/hDeltaTime;

nCustomers=0;    // number of customers in the system
nEmptyPeriods=0;
nCustomerPeriods=0;

for time=1:nNumPeriods
  if((nCustomers>0) & (rand()<pService))
    then
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     nCustomers=nCustomers-1;
    end
    
  if(rand()<pArrive)
    then
     nCustomers=nCustomers+1;
    end

  if(nCustomers<1)
   then
    nEmptyPeriods=nEmptyPeriods+1;
   else
nCustomerPeriods=nCustomerPeriods+nCustomers;
   end
   end

 fAveCustomers=nCustomerPeriods/nNumPeriods;
 fUtilization=1.0-..
    (nEmptyPeriods/nNumPeriods);

printf( simulated performance measures\n");
printf("Utilization: %8.2f\n", fUtilization);
printf("Average number of customers:..
                    %8.2f\n", fAveCustomers);

Figure 29.1. The Code.

Upon completion of all simulation iterations, the code computes and 
prints the utilization, that is, the percent of time the server was busy,
as well as the average number of customers in the system.

The code output is shown below.

simulated performance measures
Utilization:                     0.50
Average number of customers:     1.00

Figure 29.2. The Output.

As seen, the server of our M/M/1 queue is busy 50% of the time.  This
mean that it is also idle half the time.  This makes sense.  Suppose 
we have the expected 10 arrivals per hour.  The server serves 20 
customers per hour.  This means it takes the server an expected 1/20
hours to serve each customer.  Given the 10 arrivals, it would take a 
total of 10/20, or half an hour to serve all arrivals in an hour.  This 
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makes the utilization ½ or 50%.  Of course, the number of arrivals in 
an hour will vary from over time, but the argument is intuitive.

2. Exercises
1. The exponentially distributed inter-arrival times and service times 

are obtained by considering a small Δ t of 0.001 hours.  We 
referred to this as a discretization.  Just as an image is made up of 
discrete pixels, the smaller the Δ t the finer the image.  In our 
case, we want Δ t to be small enough to give good results.  That 
is faithfully represent the continuous distributions.  However, a 
small Δ t also means more iterations and thus, longer processing 
times.  Experiment with different Δ t values to see when it 
becomes so large that it fails to provide an acceptable 
representation of the continuous distribution.

2. Change the arrival and service rates and run the simulation again. 
Observe what happens when the arrival rate is greater than the 
service rate.  Discuss your findings.

3. The ratio of the arrival rate to the service rate is called the traffic 
intensity.  It is known that the utilization of an M/M/1 queue is the 
same as the traffic intensity.  Modify the code to compute the 
traffic intensity and see how it varies from the simulated utilization
factor.

4. Theoretical work shows that the number of customers in an M/M/1 

queue is
ρ

1−ρ
where ρ is the traffic intensity.  Modify the code 

to print out the theoretical value of the expected number of 
customers in the system.  Compare the theoretical values to the 
simulation results.

5. We discretize a continuous time process by considering small time 
steps  of duration Δ t .  We understand that the smaller the time 
step, the more accurate our simulation will be.  However, the 
smaller the time step, the more the computations.  In fact during 
many time steps no system event occurs.  That is, many time 
steps are void of either an arrival or a departure.  Modify the 
program to display how many time steps witness a system event.  
Let the number of time steps during the run in which there is a 
system event be K. Let there be a total of N time steps during the 
simulation run.

 1. Consider plotting the faction K/N as a function of the time step 
size h.  Guess the shape of this function. 
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 2. Plot the fraction K/N as a function of the time step size Δ t .  
Did the graph turn out to be as you conjectured?
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XXX. DISCRETE-EVENT SIMULATION
The preceding chapter developed a continuous-time simulation for 
the M/M/1 queue.  Time was discretized into small time steps ( Δ t ).
We understand that the smaller the Δ t , the more accurate our 
simulation will be.  However, the smaller the Δ t , the more 
computations are needed.  Realizing that only a few of the time steps
actually witness a system event, we can improve the efficiency of the
simulation by simply considering the system at times when an event 
occurs, and disregarding the rest of the time steps.  This approach is 
called “discrete-event simulation”.

It should be noted that simulation and related software are rather 
well developed subjects in industrial engineering.  There are many 
good simulation tools available to the industrial engineer.  Simulating
a system using a general-purpose engineering computation tool such
as Octave or Scilab is not the best idea.  We undertake such a task 
here to illustrate the fundamental concepts in simulation, rather than
offer a practical approach.

The queueing system discussed in this chapter is a rather simple 
construct, whose performance measures are readily obtained in 
closed form.  Almost all realistic industrial engineering systems are 
so complicated that closed-form expressions are not available.  One 
may resort to approximations or simplifications to obtain analytical 
expressions.  Alternatively, one may also simulate the system.  
Simulation allows one to keep system idiosyncrasies that hinder 
analytical solutions.

1. The Code
The following code illustrates a discrete-time simulation of the M/M/1 
queue.  We define and use a function named “GetNextEvent” which 
takes the number of customers in the system as an argument.  It 
returns two quantities: the next event type and the time until the 
next event.  You may think of the return value of the function as a 
vector of size 2.  The code defines the event types as “eventArrival” 
and “eventService”.  These are the only two things that can happen. 
Either a new arrival or the completion of service.  We define these 
event types as global variables and assign them values 1 and 2, 
respectively.  Such definitions are referred to as “enumerate types” 
in software languages.  The C language, for example, has built-in 
features to facilitate enumerated types.  Enumerated types help 
code readability.  Who wants to refer to the card suits as {1,2,3,4} 
when it is possible to define {spades,clubs,hearts,diamonds}?

Since we will use the enumerated types, as well as the arrival and 
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service rates in the main body of the code as well in the function, we 
defined these as “global variables”.

global rArrive;
global rService;
rArrive =10; // rate: arrival per hour
rService=20; // rate: service completion per hour
global eventArrival;
global eventService;
eventArrival=1;
eventService=2;

Figure 30.1. Global Variables and Enumerated Types.

The function GetNextEvent() is given below.  It generates two 
exponentially distributed random variables.  One is the time to next 
arrival, the other, the time to service completion.  The function takes 
as an argument, the number of customers in the system.  If the 
number of customers in the system is zero, then only an arrival is 
possible.  In this case, the function returns eventArrival as the event 
type, and the time to the next arrival. If there is one or more 
customer in the system, then a comparison is in order. The next 
event depends on which random variable is smaller.  If it is the time 
to the next arrival, then the function returns eventArrival and the 
time to the next arrival.  Otherwise it returns eventService and the 
time to service completion.

function [nextEvent, elapsedTime]=..
GetNextEvent(nCustomers)
 tArrival=grand(1, 1, "exp", 1.0/rArrive);
 tService=grand(1, 1, "exp", 1.0/rService);
 if ((nCustomers>0) & (tService<tArrival)) then
  nextEvent=eventService;
  elapsedTime=tService;
 else
  nextEvent=eventArrival;
  elapsedTime=tArrival;
 end
endfunction

Figure 30.2. The Function GetNextEvent().

Once again, we use the built-in Scilab function grand() to generate 
the exponentially distributed random variables.
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The main portion of the code is rather straightforward. We initialize a 
few variables and run the simulation until we reach the end of the 
run time.

tRunTime=100; // hours
nCustomers=0; // number of customers in the system
tEmpty=0;
tCustomerTime=0;

time=0;

while (time<tRunTime),
  [nextEvent, elapsedTime]=GetNextEvent(nCustomers);
  if(nCustomers==0) then tEmpty=tEmpty+elapsedTime; 
end;
  tCustomerTime=tCustomerTime+nCustomers*elapsedTime;
  time=time+elapsedTime;
  if(nextEvent==eventArrival) then
     nCustomers=nCustomers+1;
    end;
  if(nextEvent==eventService) then 
     nCustomers=nCustomers-1; 
   end;
end;

Figure 30.3. The Main Loop.

The main loop keeps track of time and runs until time exceed the 
specified tRunTime.  The function GetNextEvent() is called.  The 
function returns the elapsed time until the next event as well as the 
type of the next event.  If the next event is an arrival, then the 
number of customers in the system is incremented.  If it is a service 
completion, then the number of customers is decremented.  The loop
also keeps track of two performance measures.  The first is the total 
empty time, kept as the variable tEmpty.  The elapsed time is added 
to tEmpty if there were no customers in the system.  The other 
performance measure, associated with the variable tCustomerTime 
keeps track of the number of customers in the system multiplied by 
the elapsed time.  This will be used to compute the average number 
of customers in the system.

  fAveCustomers=tCustomerTime/tRunTime;
 fUtilization=tEmpty/tRunTime;

 printf("--- simulated performance measures ---\n");
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 printf("Utilization:..
                            %8.2f\n", fUtilization);
 printf("Average number of customers:..
                           %8.2f\n", fAveCustomers);

 traffic_intensity=rArrive/rService;
 ave_num_in_system=..
         traffic_intensity/(1.0-traffic_intensity);

 printf("--- computed performance measures ---\n");
 printf("traffic_intensity:%8.2f\n",traffic_intensity);
 printf("ave_num_in_system:%8.2f\n",ave_num_in_system);

Figure 30.4. Displaying the Performance Measures.

 The final few lines of the code is given in Figure 30.4.  The 
performance measures are computed and displayed.  Values 
obtained from the simulation as well as theoretical values are 
displayed.

2. Exercises
1. How quickly does the performance measures converge to the 

theoretical values?  Experiment with different rates and run times. 
How would you quantify the convergence rate describing how 
quickly the simulation results approach the theoretical limits?

2. Plot the convergence rate defined in the previous exercise as a 
function of the traffic intensity.

3. Compare the efficiency of the two simulation programs given in 
this and the previous chapter.  What are the advantages and the 
disadvantages of continuous-time simulation versus discrete-event
simulation?
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XXXI. SIMULATING THE G/G/1 QUEUE
The G/G/1 queue is like the M/M/1 queue, except that the inter-arrival
and service time distributions are allowed to be general gistribution.  
The letter 'G' denotes a general distribution.  

It must be noted that the code given in the previous chapter works 
only because the exponential distribution is a memoryless 
distribution.  That is, at and given time, the remaining time to the 
next arrival is still exponentially distributed with the same rate, 
irrespective of how long we have waited for the arrival.  The same 
goes for service completion.  Thus, our function GetNextEvent() 
generates two random variables, and uses only one of them, 
disposing of the other.  The service completion time is obtained the 
same way, no mater how long the current customer has been in the 
system.  If the service time distribution is not memoryless, then we 
must obtain a service completion time and associate it with the 
customer.  A good way to do this is by placing all the arrival times 
and service times in a vector.  Similarly, one could then compute 
another vector of service completion times.  Finally, a run through 
the arrival times and service completion times will allow us to collect 
the performance measure statistics.  The following code implements 
such a strategy.

1. The Code
As usual, the code starts with generating a vector of inter-arrival 
times and service times.  Again, we make use of the built-in Scilab 
function grand() to generate the inter-arrival and service times.  In 
the code given, we use the uniform distribution.  However, the code 
is general, and would work with any distribution.

nTotalArrivals=100;  // determines run time
// arrival times and service (processing) times
arrivalTimes=grand(nTotalArrivals, 1, "unf", 0.0, 4.0);
serviceTimes=grand(nTotalArrivals, 1, "unf", 0.5, 1.5);

for n=2:nTotalArrivals
 arrivalTimes(n)=arrivalTimes(n)+arrivalTimes(n-1);
end

Figure 31.1. Generating the Inter-arrival and the Service Times.

Rather than the time between arrivals, we cumulatively add the 
inter-arrival times so that the k-th element of the vector arrivalTimes 
holds the time at which the k-th customer arrives.  That is, the 
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elements of the vector become timestamps, rather than inter-arrival 
times.

Similarly, the service completion times are computed and placed in 
the vector departureTimes.  Again, the k-th element of this vector 
shows the time at which the k-th customer leaves the system.

// generate service completion times
waitTime=0;
lastCompletionTime=0;
departureTimes=[];
for n=1:nTotalArrivals
 waitTime=max(0, lastCompletionTime-arrivalTimes(n));
 departureTimes(n)=arrivalTimes(n)
+waitTime+serviceTimes(n);
 lastCompletionTime=departureTimes(n);
end
tRunTime=departureTimes(nTotalArrivals);

Figure 31.2. Generating the Departure Times.

In computing the departure times, we must add to the arrival time 
not only the service time, but also the time that the customer spends
waiting in the queue.  We compute the latter as the variable 
waitTime.  We also keep track of the time the last customer is 
served, as variable lastCompletionTime.  The simulation run time 
(tRunTime) is simply the time the last customer leaves the system.  
Alternatively, you could cut the simulation when the last customer 
arrives.  As long as the number of customers is high enough, these 
two approaches would give similar results.

The rest of the code simply goes through the arrival times and the 
departure times to collect the statistics.  Again, we keep track of the 
time the system is empty and the product of the number of 
customers and the elapse time.  The loop makes use of two indices.  
The variable indexArrival denotes the index of the most recent 
customer who arrived.  Similarly, the variable indexDepart holds the 
index of the customer who most recently left the system.   

// run simulation collect data
nCustomers=0;    // number of customers in the system
tEmpty=0;
tCustomerTime=0;
indexArrive=1;
indexDepart=1;
time=0;
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while (indexArrive<nTotalArrivals)

if
(arrivalTimes(indexArrive)<departureTimes(indexDepart))
then
     // next event is an arrival
 elapsedTime=arrivalTimes(indexArrive)-time;
  if(nCustomers==0) then tEmpty=tEmpty+elapsedTime;
  else
   tCustomerTime=tCustomerTime+elapsedTime*nCustomers;
   end
     nCustomers=nCustomers+1;
     time=arrivalTimes(indexArrive);
     indexArrive=indexArrive+1;
   else
     // next event is a departure
     elapsedTime=departureTimes(indexDepart)-time;
     tCustomerTime=tCustomerTime+..
                           elapsedTime*nCustomers;
     nCustomers=nCustomers-1;
     time=departureTimes(indexDepart);
     indexDepart=indexDepart+1;
  end
end

Figure 31.3. The Main Loop.

The remainder of the code is similar to the one given in the previous 
chapter.  It computes and displays the performance measures.

 fUtilization=1.0-(tEmpty/tRunTime);
 fAveCustomers=tCustomerTime/tRunTime;

 printf("--- simulated performance measures ---\n");
 printf("Utilization:                 %8.2f\n",..
                                      fUtilization);
 printf("Average number of customers: %8.2f\n",..
                                     fAveCustomers);

Figure 31.4. Displaying the Performance Measures.

Although the code is a bit longer than the one given in the previous 
chapter, we note that it is written not for efficiency or code size but 
for readability.  It is written to be logically organized.   You may feel 
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that the three separate loops could indeed be combined to improve 
efficiency.  This, however, would make the code less tractable.  Once 
again, our objective is to illustrate the fundamental principles.  You 
are encouraged to experiment with the code and try to merge some 
of the steps to improve efficiency.

2. Exercises
1. The code given above uses the uniform distribution to generate 

inter-arrival and service times.  Experiment with the distribution 
parameters and observe their effect on the utilization factor and 
the average number of customers in the system.

2. It was mentioned that the utilization factor of the M/M/1 queue is 
the traffic intensity.  Check if the same true for the uniform 
distributions.  Consider the traffic intensity to be the ratio of the 
mean service time to the mean inter-arrival time.

3. Modify the code and try several other distributions such as the 
Erlang or beta distributions.  Please note that the inter-arrival 
times and service times must be non-negative.  Compare the 
results to the M/M/1 queue with the same mean inter-arrival time 
and the mean service time.  Which distribution leads to a higher 
utilization rate?  Why?
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