

An Introduction
to

Industrial Engineering
through

Computation

Sencer Yeralan

July, 2016

An Introduction to Industrial Engineering through
Computation, First Edition, Sencer Yeralan, P.E., Ph.D.,
July 2016, Ed.: H. M. Emery.

ISBN 978-0-9633257-4-7

Copyright 2016 by Sencer Yeralan.

All rights Reserved

All information contained herein is the sole property of Sencer
Yeralan who reserves all rights and privileges regarding the use
of this information. No part of this book may be reproduced,
distributed, or transmitted in any form or by any means,
including photocopying, recording, or other electronic or
mechanical methods, without the prior written permission of
the author, except in the case of brief quotations embodied in
critical reviews and certain other noncommercial uses
permitted by copyright law.

This document is not intended for reproduction or distribution
outside of www.yeralan.org.

For permission requests regarding reproduction or distribution
this document, write to reprint services, addressed “Attention:
Permissions Coordinator,” at books@yeralan.org.

Although every precaution has been taken to verify the
accuracy of the information contained herein in text and
software, the author assumes no responsibility for any errors or
omissions. No liability is assumed for damages that may result
from the use of information contained within.

Books may be obtained by contacting the author by electronic
mail or through the website, books@yeralan.org or
books.yeralan.org.

Cover photograph: Davca, Slovenia, by the author.

http://www.yeralan.org/
http://www.books.yeralan.org/
mailto:books@yeralan.org
mailto:books@yeralan.org

...to The Great Professor.

Preface
This textbook is an outgrowth of a first-year course I have been
teaching at Yasar University in Izmir. It is a somewhat nostalgic
course for me. As a young student back in the early 1970s, I took
the course called Engineering Sciences ES 100. There, the instructor
told us about computation using a slide rule. The course was very
informative. Our instructor was knowledgeable and entertaining. It
provided a nice introduction to life as an engineer. I truly understood
for the first time such concepts as accuracy, computational effort,
modeling, approximation, order of magnitude, and error terms. What
remains from the course is not computation, but rather, a general
substrate of engineering. Then again, at the start of graduate
school, I had a most insightful professor, who made an indelible
impression upon me. This time we were free to use computers – any
language we wanted: assembly, Fortran, or COBOL.

The days of slide rules have long past, although I keep mine handy.
Nowadays we have wonderful software that takes the tedium out of
computing, and leaves only its joy. In my courses, I use the Linux
operating system and open-source software. This makes it attractive
to students on a fixed budget or to those enterprising students who
want to dig deep into the source code. I emphasize that the course
is not a programming course. One may use any software, including a
calculator, spreadsheets, or one may compute by hand.

Also gone are the days when we had to thumb through many books
and magazines to just get an inkling of an idea. It was indeed an
arduous task with a healthy dose of tedium -- unnoticed then, but
probably most unpalatable to the reader today. Reading material has
changed as well. One prefers concise and customizable instruction.
Accordingly, this book is written as a minimalistic cookbook. It has
the necessary ingredients to introduce the topic and give summary
information. However, the full potential of the book is realized only
when it is used with the accompanying example code. The
combination of concise discussions and executable code is hopefully
sufficient to whet the appetite and pave the road to understanding,
and hopefully further, towards skillful mastery. The real benefit of
example code is in making modifications and developing custom
extensions. This reinforces the interplay between the visualized
conceptual solution and the computational skills to be developed.

Computational skills are important to an engineer. Here, the term
”skill” should be emphasized. “It is a bit like riding a bicycle,” I tell
my students. “It can be acquired only by practice.” After all, the
theory of riding a bike is simple enough. One sits on the seat, puts

- i -

feet on pedals and hands on the handlebar, alternatively pushes on
the pedals while turning the handlebar to the intended direction.
Simple enough, right? But just knowing the theory does not make
one a rider. Nor is it possible to ride after watching someone else do
it. Computation is also a skill. Computational skills are quite
necessary for an engineer, to obtain numerical solutions and to
develop insights. Just like riding a bike, though, one must practice
computation to be good at it. This entails frequent mishaps and the
occasional utterly painful failures. But there is really no other way.
Also interesting is the fact that it is not easy, if not outright
impossible, to fake such a skill. Just ask someone to ride ten paces
on a bike. You can easily tell if the rider is a skilled cyclist or not.
The same goes for computation. So, it is good advice to the young
engineer to practice, practice, practice.

...as a textbook

An introductory course could be arranged around the this book. The
book should be taken as a minimalistic guide, where supplementary
material is added either in lectures or from on-line sources. The
software will provide demos to facilitate active learning. In a typical
course, the student is exposed to a series of industrial engineering
models. The important concepts are discussed while simple, brute-
force computational solutions are given. The objective is not to
develop the theory of such models, nor is it to provide the most
elegant or the most computationally efficient solution procedures.
Rather, the objective is to introduce the concepts and start playing
with the models at a very elementary level. Industrial engineering
students will undoubtedly come across the theory and better solution
procedures in their following years. Having been through this book,
however, the industrial engineering student, when faced with such
courses as optimization, location and layout, scheduling, queueing,
etc., will have an idea of the conceptual ingredients of these topics.
Moreover, if need be, the student could find solutions to some
simplified problems by straight-forward computation. Such work is
often the best means to gather insights into a new topic. Recall that
much research in these fields start with entertaining example
problems.

In my course, each chapter of the book takes one week to cover. I
give reading assignments related to the topic, so that the students
come to class (hopefully) prepare and knowledgeable. On a different
day, the students meet for a laboratory session. There, the students
are given a related numerical problem and asked to find a solution. I
ask that students keep a good old-fashioned notebook and record

- ii -

their annotations and findings in a systematic manner. Students
submit an engineering report at the end of the of the laboratory
session. Engineering reports are to be concise and to the point, with
rich engineering content but short on verbiage. As such, the course
emphasizes experiential active learning and promotes good record-
keeping skills.

There are several good textbooks on industrial engineering models,
of which only a few are referenced at the end of the book. As
needed, the student is encouraged to find on-line reading material
and video tutorials related to the topics. Such material is not
referenced, since it is voluminous and dynamically changing. A
simple on-line query would return many good tutorials on any one of
the topics covered. In this respect, the course also inaugurates
lifelong learning paradigms and skills.

The experiments in this book will provide the necessary foundation
for the student who wants to develop computational skills. Although
the examples are from industrial engineering topics, no prior
knowledge in industrial engineering is needed. This makes the book
suitable not only for industrial engineering, but also for related
disciplines, where computational skills may come in handy.

The example code given in the chapters is available on line at
books.yeralan.org.

Sencer Yeralan
Izmir, July 2016

- iii -

http://books.yeralan.org/

Table of Contents
I. Engineering Computation Software.............................1

1. The Command Line...2
2. The Editor...4
3. Exercises...6

II. Functions and Graphs...7
1. A Simple Graph...7
2. Exercises...8

III. Linear Equations..9
1. Matrix Operations...9
2. An Example...9
3. Exercises...10

IV. Growth Models...13
1. Graphing Growth..14
2. Graphing Limited Growth..15
3. Exercises...18

V. Chaos and Randomness..19
1. An Implementation...19
2. Exercises...22

VI. Simple Numerical Differentiation...............................23
1. An Example...23
2. Exercises...24

VII. Simple Numerical Integration....................................25
1. An Example...25
2. Exercises...27

VIII. A Simple Algorithm: The Bi-Section Method...............29
1. An Example...29
2. Exercises...31

IX. A Simple Algorithm: The Secant Method....................33
1. An Example...33
2. Exercises...34

X. An Inventory Model..37
1. The Model...38
2. Cost Components...39

- v -

3. The Code..39
4. Exercises...41

XI. Facility Location...43
1. An Example...43
2. The Code..43
3. Exercises...45

XII. Combinatorial Optimization: The Knapsack Problem...47
1. An Example...47
2. Exercises...50

XIII. Heuristics for Combinatorial Optimization: The
Knapsack Problem..51

1. A Heuristic for the Knapsack Problem.....................................51
2. The Code..52
3. Exercises...53

XIV. Combinatorial Optimization: the Traveling Salesman
Problem...55

1. The Code..55
2. Exercises...57

XV. A Heuristic for the Traveling Salesman Problem.........59
1. The Code..59
2. Exercises...61

XVI. The Assignment Problem..63
1. The Code..63
2. Exercises...65

XVII. Scheduling: The Single Machine Case........................67
1. Minimize Average Flowtime..67
2. Exercises...70

XVIII. Network Models: Shortest Path.................................71
1. An Example...71
2. An Algorithm...72
3. The Code..73
4. Exercises...75

XIX. Recursive Network Algorithms: Find a Path...............77
1. Find A Path From Source to Sink...77
2. Exercises...80

- vi -

XX. Network Models: Max Flow.......................................81
1. Support Functions...81
2. The Main Program...82
3. Exercises...83

XXI. Linear Programming...85
1. The LP Model..85
2. A Naive Approach...86
3. A Smarter Approach..88
4. Exercises...91

XXII. Constrained Nonlinear Programming.........................93
1. The Code..93
2. Exercises...95

XXIII. Monte Carlo Analysis..97
1. The Code..98
2. Exercises...98

XXIV. Statistical Forecasting..101
1. Moving Averages..101
2. Exponential Smoothing...103
3. Exercises...105

XXV. Working with Noisy Data...107
1. Representing Data..107
2. Drawing Histograms...108
3. Exercises...109

XXVI. The Law of Large Numbers......................................111
1. The Code..111
2. Exercises...112

XXVII. The Central Limit Theorem..............................113
1. The Code..113
2. Exercises...115

XXVIII. Curve Fitting (Simple and Multiple Regression) 117
1. The Least-Squares Method...118
2. The Code..119
3. Exercises...121

XXIX. Simulating A Simple Queue.....................................123
1. A Specific Queue...124
2. Exercises...126

- vii -

XXX. Discrete-Event Simulation.......................................129
1. The Code..129
2. Exercises...132

XXXI. Simulating The G/G/1 Queue....................................133
1. The Code..133
2. Exercises...136

Alphabetical Index..137
Reference Textbooks...140
Software Sources..140

- viii -

I. ENGINEERING COMPUTATION SOFTWARE
Computation is central to engineering. Crunching numbers is not,
however, the end goal of engineering. Engineers design and build
products, in a responsible way, to serve practical needs.
Responsibilities regard economical, environmental, and ethical
issues. Engineering design relies on computation. Computation
focuses the design effort so that, rather than trial and error,
components and parameters are selected base on calculation.
Engineers analyze systems, which also requires computation.
Analysis often is needed to uncover problems, or to identify leverage
areas where systems may be improved, so that next-generation
products are better than the current ones.

The way engineers compute has changed over the years. Early on,
all engineering computation had to be carried out by hand. The pace
of computations, as well as its resolution, suffered. Over the years,
many clever numerical techniques have been devised to make
computation as efficient as possible. Some of these techniques are
essential ingredients of the skill set of any engineer. The 20th
Century saw the slide rule, followed by mechanical and electronic
calculators, and finally the ubiquitous do-it-all computer. Today, the
computer, including its many platforms (e.g. tablets) is the default
device that is used in engineering computation. However -- and this
is the crucial point – just because the computer solves many
problems, engineers cannot forgo their responsibility. The engineers
must be in the drivers seat, recognizing that the computer is only as
effective as the engineer who understands the domain and uses the
software.

There are many good engineering software products available to the
engineer. Many of them are open-source software. The student
should note that most of these programs share a similar syntax.
Thus, switching from one platform to another is not much different
than switching calculators. At least for a competent engineer.

In this book, we will use mostly Scilab and Octave, two of the most
widely used open-source software products. Commercial software
products such as Matlab and Mathematica are also powerful
platforms. However, the open-source products, being freely available
on various operating systems, are more than sufficient for our
purposes.

This book is written to serve as an introduction to students of
industrial engineering. In this sense, it targets two equally worthy
objectives. First, it intends to instill engineering skills, discipline, and

- 1 -

intuition into the first year student. In addition, it aims to introduce
the student to some of the basic models encountered in the field of
industrial engineering. The topics are selected such that the
industrial engineering student is resented with a preview of subjects
to come. However, the topics are treated in a rather informal
manner so that the non-industrial engineering student could also find
the material interesting. This is done by a series of simple
computational tasks. The student will be exposed to, by hands on
experimentation, topics in industrial engineering, as well as concepts
of computation, programming, and algorithms. The honing of
general problem solving skills are encouraged by hands on simple
computational tasks.

The student is expected to have a background in calculus and linear
algebra. Following the contemporary modes of learning, the student
is also expected to go through software manuals to identify the
relevant software features that will come useful in tackling the
computational tasks.

1. The Command Line
Simple computations can be carried out on a calculator. Most
engineering software include a command-line interface where
calculator-like instructions may be entered. The following figure
shows the command interface of Scilab, which is called the Scilab
Console.

- 2 -

Figure 1.1. The Scilab Console.

The expression 5*(3+1) is written into the Console window. When
the user presses the “Enter” key, the answer (20) is displayed. Note
that the Console has features above and beyond a calculator. For
example, you may define variables and then carry out computations
using these variables.

- 3 -

Figure 1.2. Defining simple variables.

Note that Scilab keeps a history of the commands. You may double-
click on the command in the “Command History” window to re-issue
the command. Similarly, there is a “Variable Browser” which shows
the defined variables and the results of the computations. Again, if
you double-click on the variables in this window, further information
about that variable is shown.

2. The Editor
Issuing commands on a instruction-by-instruction basis in the
Console is adequate for the simpler calculations. If one wants to
carry out detailed computations, then the “Editor” is more
convenient. The “Editor” allows you to write your instructions one
after another, and then save the file. You may run the instructions,
or modify the file to update your instructions. This amounts to a
programming effort, where the list of instructions saved by the Editor
may be regarded as a program.

- 4 -

Figure 1.3. A simple script in the Scilab Editor.

The simple three-line script shown in Figure 1.3 defines x and y and
then displays the result of x*y using the built-in disp() function1.

The double slashes in the beginning of line 1 specify the beginning of
a comment. Comments are short notes embedded in your code.
They are ignored during execution. Good comments are essential to
make your code readable.

Note that there are different options to execute the script. “Execute
with echo” simulates the command console interface. Each time a
line is executed, the result is echoed on to the screen. This is good
for debugging your scripts. “Execute without echo” requires you to
explicitly issue instructions to display the results.

Each of the engineering computation software has many utilities and
features to be explored. It is left to the student to go through the
menus and refer to the software manuals to become familiarized with

1 As a convention of the book, we give the scripts but not the detailed
explanations of the built-in functions. The student is referred to the
software manuals for information on these functions.

- 5 -

these. Software skills always come handy when you face a real-life
engineering task.

3. Exercises
1. Define the constants C1=2, C2=4, and C3=9.

2. Using the constants defined in Exercise 1, compute C1C2, and
C2*(C2/C3).

- 6 -

II. FUNCTIONS AND GRAPHS
Functions may be expressed analytically, as lists, or graphically.
Engineers like graphs, since they pack a lot of information in an
easily observable manner. A list of independent variables, with
corresponding dependent variables, is a good way to express a
function empirically. Whereas analytical expressions are concise
forms to express functions, especially if one is using calculus, a list of
independent and dependent variable values is often sufficient for
numerical work. Not surprisingly, engineering computation software
includes many features that facilitate graphing functions.

1. A Simple Graph
The following Scilab code defines a vector x and a vector y, whose
elements are the squared values of the vector x.

// A trivial function and its plot

x=1:0.1:10
y=x.^2
plot(x,y)

Figure 2.1 A simple function.

The independent vector is defined by the line

x=1:0.1:10

The colons are used to define ranges. Here, there are three values
separated by the two colons. These are the start value (1), the step
size (0.1) and the end value (10). You should view the details of
vector x in the Variable Browser.

The next line defines the dependent variable (y) values.

y=x.^2

Each element of y is defined as the square of the corresponding
element of x. The usual symbol for power is the circumflex (^).
However, note that rather than x^2, we use the notation x.^2, that
is (.^). The period before the symbol indicates that the power is to
be computed element-wise. Otherwise, x^2 would indicate the
multiplication of the vector x with itself. The vector x is a row vector.

- 7 -

The multiplication of a row vector and a row vector is not defined.
You may multiply x with its transpose (i.e., the dot product) in which
case, the result is a scalar. Element-wise operations are what we
need here.

The last line plots the function as pairs of x and y values in a
separate window. Scilab puts values on the two axes. Refer to the
manuals to find out how you may add additional information, such as
axis titles, to the plot.

plot(x,y)

Figure 2.2 The plot of a simple function.

2. Exercises
1. Refer to the documentation of your engineering software to find

information on the sin() function. Plot the function sin(x) for x in
the range -4 to +4 radians.

2. It was mentioned that a dot product is possible provided that a row
vector is multiplied by a column vector. The vector x used in the
example is a row vector. Refer to the documentation of your
engineering software to find out how you may transpose the
vector x. Then find the dot product of x and xT.

- 8 -

III. LINEAR EQUATIONS
In the previous chapter, we used vectors. Engineering applications
also make extensive use of matrices. A matrix may be defined
element by element. The syntax is fairly common.

A=[1 2; 3 4]

 This defines the 2-by-2 matrix

A=(1 2
3 4)

Note that the elements of a row are separated by spaces. Placing
commas also works in most software, as below.

A=[1, 2; 3, 4]

1. Matrix Operations
Engineering computation software allows operations that involve
matrices and vectors. Again, remember that if you want the
operations to be carried out element-wise, place a dot before the
operator. Of course some matrix operations are already element-
wise, for example A+B is already computed element-wise. However
A*B refers to matrix multiplication, while A.*B multiplies the elements
of A and B element-wise. The former matrix multiplication requires
that the number of columns of A is the same as the number of rows
of B. The element-wise operation is permitted only if A and B have
the same dimensions.

2. An Example
A childhood riddle states that a farmer had chickens and sheep. The
total number of heads were 6 while the total number of feet were 16.
How many chickens did the farmer have?

Th riddle may be formulated by two linear equations in two
unknowns. Let C and S be the number of chickens and the number
of sheep.

C+S=6
2C+4 S=16

In matrix notation, we have,

- 9 -

(1 1
2 4)(CS)=(6

16) .

In the console, let us define the square coefficient matrix and the
right-hand-side matrix.

-->A=[1 1;2 4]
 A =

 1. 1.
 2. 4.

-->r=[6 16]'
 r =

 6.
 16.

-->(A^-1)*r
 ans =

 4.
 2.

Figure 2.1. Console Dump.

Figure 2.1 shows the definition of the coefficient matrix (A) and the
right-hand-side vector (rhs) in Scilab. Note that vectors in Scilab are
defined as row vectors. The tick mark (single quotation mark) is
used to transpose the defined vector to a column vector. From then
on, the solution is computed simply as the inverse of matrix A, or a
to the power -1, multiplied by the right-hand-side vector. The
console returns the solution vector (4,2)T indicating that the farmer
has 4 chickens and 2 sheep.

3. Exercises
1. Write the steps in the example as a script and execute the script

to find the solution.

- 10 -

2. Generalize your script in Exercise 1 to allow the user to input the
number of heads and the number of feet. (Hint: Most software has
an input() function that prompts the user and returns a value.
Refer to the documentation of your software.)

3. Define 3-by-3 matrices A, B, and C. Then compute A*(B+C).

4. Using the matrices defined in Exercise 3, find (A*B) and (A .* B).
How do these two differ?

5. Refer to the documentation of your software and find the
determinant of a 3-by-3 matrix.

6. Refer to the documentation of your software and find out how you
may define a N-by-N matrix whose elements are random numbers
in the range 0 to 100.

- 11 -

IV. GROWTH MODELS
Growth models predict the population as a function of time. The so-
called Malthusian model, named after Thomas Robert Malthus, is
given by the simple differential equation

dP(t)
dt

=r P(t)

Where P(t) is the population at time t, and r is the birth rate. The
differential equation states that the change in population at time t is
proportional to the population at time t.

A discrete version of the Malthusian growth can be written as,

Δ P=Pn+1−Pn=r Pn

which yields,

Pn+1=(1+r)Pn .

The Malthusian growth model is thus completely determined when
the initial population (that is, P(0) or P0) and the birthrate r are given.
The resultant population grows exponentially (geometrically for the
discrete case) without limit.

The growth is limited by the introduction of a carrying capacity by
Pierre Francois Verhulst. The Verhulstian model assumes that K is
the maximum population sustainable by the environment. The
parameter K is called the carrying capacity. The model reduces the
birthrate as the population approaches K.

dP(t)
dt

=r P(t)(1−
P (t)
K

)

Notice that, compared to the Malthusian case, the model has an
additional term. As P(t) is small compared to K, the model behaves
like the Malthusian model, since the additional term is close to unity.
However, as the population approaches K, the additional term
approaches zero, effectively cutting off the birthrate. The discrete
case is similarly evaluated.

Δ P=Pn+1−Pn=r Pn(1−
Pn

K
)

or

Pn+1=Pn(1+r (1−
Pn

K
)) .

- 13 -

1. Graphing Growth
The following Scilab code computes the population for the next 100
years. The birthrate is taken as 0.01, and the initial population,
p0=100.

The vector population is initialized to a single value of p0. A for loop
is used to iterate through 100 years.

clc

// Malthusian growth
// --- parameters ---
p0=100; // initial population
birth_rate=0.01; // birth rate
// --- population ---
population=[p0]; // population (count)

for year=1:100
// update population
population($+1)=..
 (1+birth_rate)*population($);
end

scf(0);
plot(population);
legend('population');
xtitle('population');

Figure 4.1. Malthusian Growth (Scilab Code).

There are several interesting points to note.

1. The initial instruction clc clears the console.

2. The vector population is initialized to be a vector of size one,
holding the value p0.

3. A loop is formed where the loop variable year is incremented,
starting from 1, up to 100. The loop starts with the keyword for
and ends with the keyword end.

4. The equation within the loop is executed 100 times, as specified
with the for statement. The right-hand-side of the equation refers
to the element of the vector population($). Here, the '$' indicates
the index of the last element of the vector. Thus, population($) is
the last population available in the vector.

- 14 -

5. The population of the following year is similarly defined as
population($+1). Note that as new elements are defined, the
length of the vector is incremented. Adjusting the size of vectors
(arrays, in general) is a nice feature of such high-level languages.

6. The equation spans two lines. The double dots (..) at the end of
the first line indicates that the next line is a continuation, and
must be read by the interpreter before executing the instruction.

7. The Scilab function scf(N) selects figure window N. Here, we will
draw our graph in window 0.

8. The Scilab functions xtitle() and legend() place meaningful labels
on the horizontal axis and name the graph. If we want to plot
multiple graphs in the same window, preferably in different colors,
a legend for each graph would make reading the display more
readable.

The resultant graph shows the typical geometric population growth.

Figure 4.2. Malthusian Growth.

2. Graphing Limited Growth
The addition of a carrying capacity to the code in the previous
section results in limited growth.

clc
// Verhulst growth
// --- parameters ---

- 15 -

p0=100; // initial
population
birth_rate=0.01; // birth rate
K=1000; // carrying capacity
// --- population ---
population=[p0]; // population (count)

for year=1:1200
// update population
 pop_growth=..
 birth_rate*population($)*(1-population($)/K);
 population($+1)=population($)+pop_growth;
end

scf(0);
plot(population);
legend('population');
xtitle('population');

d=diff(population);
scf(1);
plot(d);
legend('population(n+1)-population(n)');
xtitle('population change');

Figure 4.3. Verhulst Growth (Scilab Code).

A carrying capacity of 1000 is used. The code is very similar to the
previous case, except for the added term in the equation. The loop is
run for 1200 years. Note also that a second window is used to plot
the change in population. A new vector (d) is obtained by calling the
Scilab function diff(population). The function diff() computes the
successive differences of a given vector. Note that the resultant
vector has one fewer element than the original vector.

- 16 -

Figure 4.4. Verhulst Growth.

Figure 4.5. The Change in Population with Verhulst Growth.

Figure 4.5 shows the change in population over time. It is observed
that the population growth is reduced to zero as the population
approaches the carrying capacity.

- 17 -

3. Exercises
1. Growth models involving a predator and a prey are extensions of

the models discussed in this chapter. The Lotka–Volterra equations
are given below.

dR(t)
dt

= αR (t) − βR (t)F(t)

dF(t)
dt

= δR (t)F(t) − γ F(t)

Here, R(t) is the rabbit population at time t, and F(t), the fox
population. The parameters are shown by the four Greek
characters. The parameters specify the birthrates as well as the
interdependency between the predator and the prey.

Model the above growth equations and plot the populations as
functions of times. Experiment with different parameters and
starting populations.

- 18 -

V. CHAOS AND RANDOMNESS
The growth model discussed in the previous chapter has been the
subject of some investigation into systems that display chaotic
behavior. Specifically, the difference equation

pn+1=r pn(1− pn)

inspired by the Verhulst Growth Model, given appropriate values of r,
generates a sequence of numbers pn that behave chaotically. If the
sequence starts with a value in the range [0, 1] and the parameter
r<4, then all elements in the sequence will be limited to the range
[0, 1]. This gives the idea that successive elements of the sequence
may be used as pseudo-random numbers. Interestingly, for ranges
of the parameter r, the sequence behaves nicely and converges to
target values determined by the parameter value.

1. An Implementation
The following code implements the difference equation.

// chaotic sequences – (pseudo-random numbers?)
// p(n+1)=r*p[n]*(1-p[n])
// --- parameters ---
 r=3.99; // rate
 p0=0.5; // initial value
 p=[p0]; // initial population

 for i=1:1000
 p($+1)=r*p($)*(1-p($)); // update population
 end

 scf(0);
 plot(p, 'ro');
 xtitle(sprintf('RNG, r = %f', r));
 xlabel('n');
 ylabel('Pn');

Figure 5.1. Chaotic Sequence based on Verhulst Growth.

You may have noticed the use of the command-line

 xtitle(sprintf('RNG, r = %f', r));

to put a title on the graph. The built-in function xtitle() places a
given string as a title, as for instance, in xtitle('My Title'). In our
example, a constant string is not given. Instead, we use the sprintf()
function to construct a string. The sprintf() function is well known to

- 19 -

users of C languages. It prints a formatted string. Here we want to
construct the string to reflect the value of the parameter r. The '%f'
is the place holder for the value of a floating point number. The
value is usually taken from a variable which follows as a function
argument. The student is referred to documentation on C language
library functions for more information on printf() and its many
variations including sprintf().

The code, when run, plots the sequence of numbers by small red
circles , as shown below.

Figure 5.2. The Sequence.

Although the numbers look relatively well distributed over the range,
the sequence is not suitable to be used as random numbers, since
the sequence displays a very high degree of autocorrelation.

Autocorrelation describes how a sequence (or signal) is correlated
with its time-shifted self. In the code below, we plot the values of
pn+1 against the values of pn. The plot reveals that if pn+1 is expected
to be close to pn.

- 20 -

Figure 5.3. Successive Elements of the Sequence.

As can be seen from Figure 5.3, if pn is close to the mid point, the
next element is close to 1. Similarly, if pn is close to either boundary,
the next element is close to 0. Such predictability of the next
element from the current disqualifies the difference equation from
being used as a pseudo-random number generator, no matter how
chaotic its output looks over time.

We repeat the experiment and produce a graph similar to that
depicted in Figure 5.3, but this time using the built-in pseudo-random
number generator function rand(). Each successive call to this
function returns another pseudo-random number.

- 21 -

Figure 5.4. Successive Calls to rand().

Figure 5.4 shows that there is very little if any correlation between
successive calls to rand(). That is, it is difficult to guess the value of
Pn+1 from the value of Pn where the elements of Pn are obtained from
successive calls to rand().

2. Exercises
1. Try different values for parameter r and identify the ranges where

the sequence behaves chaotically, and where it approaches a
constant.

2. Suggest modifications to the difference equation to improve its
usefulness as a pseudo-random number generator.

- 22 -

VI. SIMPLE NUMERICAL DIFFERENTIATION
Numerical differentiation and integration are essential engineering
computations. Numerical differentiation is obtained simply by finding
the difference between successive function values, separated by a
given step size. Then, this difference in the function values divided
by the step size approximates the slope of the function at those
points.

1. An Example
Numerical differentiation is quite straightforward, as given by the
following example.

// differentiate sin(x)
clc
clear

 h=0.1; // step size
 x=-%pi:h:%pi; // -pi to pi in increments of h
 y=sin(x);

 // z numerical differentiation
 z=diff(y);
 z($+1)=z($);
 z=z./h;

 scf(0); // figure window 0
 plot(x, y, 'b'); // plot y in blue
 plot(x, z, 'r'); // plot z in red
 xlabel('x');
 ylabel('sin(x)');
 legend(['sin(x)';'d/dx sin(x)']);
 xtitle('numerical differentiation');

Figure 6.1. Numerical Differentiation of sin(x).

The code shown in Figure 6.1 plots sin(x) and its numerically
computed differentiation.

- 23 -

Figure 6.2. Graphical Output of the Example Code.

Note that the numerical differentiation looks as expected, that is, like
cos(x).

2. Exercises
1. Try different values for the step size and re-plot the graphs. What

values or range would you recommend for the step size? Why?

2. Select three common functions and plot their numerical derivative
functions.

- 24 -

VII. SIMPLE NUMERICAL INTEGRATION
The numerical integration of a simple univariate function is useful to
find the area under the function within a range of the independent
variable.

1. An Example
The following example uses a function definition for the sake of code
flexibility. By changing the function definition, you may quickly
modify your code to integrate different functions.

clc
clear
// define the function -- try others
function [q]=f(a)
 q=sin(a)*cos(a);
endfunction

// lowerbound and upperbound define
// the interval
// h is the step size
// x is a vector of the independent
// variable values
// x has (upperbound-lowerbound)/h intervals
// x has 1+(upperbound-lowerbound)/h elements
// y is the vector of function values
// z is a vector of numerical
// integration values
// we compute the elements of z by
// incrementally adding the area under
// the function

h=0.1;
lowerbound=0;
upperbound=10;

// set the column x vector
x=(lowerbound:h:upperbound)';

// integral at lowerbound is 0
z=[0];
// function value at lowerbound
y=[f(lowerbound)];

for i=1:length(x)-1

- 25 -

 y(i+1)=f(x(i+1));
 z(i+1)=z(i)+f(x(i))*h; // rectangular
end

// plot the function and the
// numerical integration
scf(0);
plot(x, y, 'b');
plot(x, z, 'r');
xlabel('x');
ylabel('function and its integral');
legend(['f(x)';'the integral']);
xtitle('f(x) and its integral');

Figure 7.1. Numerical Integration.

The approach is to divide the function into narrow rectangles of width
h. Here, 'h' is referred to as the step size. The rectangle at position
x has an area h time the function value at x. The code simply loops
through the range, computes the function values y(x) at x and
accumulates the areas of the rectangles. The total area from the
lower bound to x is stored as z(x), the value of function z at x. The
function z(x) is thus the integral of the function y(x).

The code plots the function and its numerical integral, as shown
below.

- 26 -

Figure 7.2. The function and its numerical integral.

2. Exercises
1. Try different values for the step size and re-plot the graphs. What

values or range would you recommend for the step size? Why?

2. Select three common functions and plot their numerical derivative
functions.

- 27 -

VIII. A SIMPLE ALGORITHM: THE BI-SECTION METHOD
Algorithms are ubiquitous computational tools in engineering.
Although their use may extend to other domains, such as logic or
signal processing, in engineering, they are used to obtain numerical
solutions to problems. Perhaps a good way to understand what an
algorithm is, is to understand what an algorithm is not. Take, for
instance, finding the roots of a second degree polynomial. If the
polynomial is a function, such as,

f (x) = ax2
+bx+c

and we are interested in finding the a value of x at which point
makes f(x)=0, then we have the closed-form formula,

x =
−b+√(b2

−4 ac)
2a

which gives such a value of x. We call this, as mentioned, a “close-
form” solution, since all one needs to do is plug in the given data
(the coefficients) and perform the calculations.

In contrast, no such closed-form formula exists for a polynomial of
degree 5. So, if an engineering problem requires a value of the
independent variable at which point, a fifth degree polynomial yields
the value of zero, then we resort to different computational
approaches. An algorithm is such an approach.

An algorithm seeks solutions by an iterative method. At each step,
computations are performed, whose results are hoped to converge to
a solution. Whether such a convergence is guaranteed is an
important question. A well-developed algorithm should not only
produce results which converge to a solution, but should also do so in
as few steps as possible. Some algorithms never find the exact
solution. They only approach a solution. We discuss such an
algorithm in the example below. The so-called bi-section algorithm is
a flexible procedure that is applicable to a wide range of problems.
Moreover, it has a good convergence rate, and is quite easy to
implement.

1. An Example
Consider the polynomial

f (x) = x5
−2 x4

+3 x3
−4 x2

+5 x−6

We are interested in a value of x which makes f(x)=0. The bi-section
algorithm starts with an interval of the independent variable, which is

- 29 -

known to contain a solution. In this case we have a continuous and
smooth function. The interval [-100, 100] is guaranteed to contain a
solution, since f(-100)<0 and f(100)>0. Thus, someplace within the
interval the function must have at least one point where it crosses
the horizontal axis.

Each step of the algorithm reduces the interval by half. Hence the
name of the algorithm. Each step cuts the interval in half.

Specifically, we pick the midpoint of the interval and compute the
function value. If the function value is positive, we replace the
current upper bound with the midpoint. That is, the midpoint
becomes the upper bound for the next iteration. Otherwise, we
replace the lower bound with the mid point. After N iterations, the
interval is 1/(2N) the width of the original interval.

We now give the code.

// find a zero of the polynomial
// f(x)=x^5-2x^4+3x^3-4x^2+5x-6
clc
clear

function [y]=f(x)
 y=x^5-2*x^4+3*x^3-4*x^2+5*x-6;
endfunction

LB=-100; // initial lower bound
UB=100; // initial upper bound
x=[]; // empty vectors
y=[];

for i=1:30 // 30 steps suffice

 x(i)=(UB+LB)/2; // the current x value
 y(i)=f(x(i)); // the current y value

 // update the range [LB, UB]
 if y(i)*f(UB)>0 then UB=x(i);
 else LB=x(i);
 end

 printf("%d:%f %f\n",i, x(i), y(i));
end

Figure 7.1. The Bi-Section Algorithm.

- 30 -

The polynomial is implemented as a function for added flexibility.
The remainder of the code is independent of the function. As such,
the code may be used for other problems provided that the function,
and possibly the initial interval are updated accordingly.

The initial interval is set to [-100, 100], defined by the variables LB
and UB. Here, we implement the algorithm for 30 iterations. In
effect, the width (200) of the initial interval is reduced to
(200/230=0.186x10-6). The tail end of the output is shown below.

.

.
24: 1.491797 -0.000011
25: 1.491803 0.000056
26: 1.491800 0.000022
27: 1.491798 0.000005
28: 1.491798 -0.000003
29: 1.491798 0.000001
30: 1.491798 -0.000001

Figure 7.2. The Algorithm Output.

As seen, the algorithm converges to a solution (approximately
1.492).

2. Exercises
1. Improve the given code by implementing a terminating criterion.

Define a tolerance, Epsilon with a value of 10-9. Let the loop
terminate when the width of the interval drops below Epsilon.

2. Add a check at the beginning of the code to make sure that the
function value at the two ends of the interval are have opposite
signs (i.e., one is positive and the other negative).

3. Modify the code to find a local extremum (maximum or minimum)
of a given function.

4. Modify the code by implementing an initial step to ask the user for
the initial interval. Plot the function in this interval and ask the
user if the interval is appropriate, or if the user would like to issue
a different initial interval.

- 31 -

IX. A SIMPLE ALGORITHM: THE SECANT METHOD
Before we continue with industrial engineering problems, we dwell on
one more algorithm to rivet the ideas firmly in place. The Secant
Method, like the Bi-Section Method already discussed, is a general-
purpose algorithm. It has better convergence characteristics
compared to the bi-section method.

The secant method uses the most recent two solutions to find the
next. The most recent two solutions provide two points which are
used to define a line. The value of the independent variable that
makes this line cross the horizontal axis is use for the next solution.
The method is summarized by a second-order difference equation, as
given below.

x3=x2−f (x 2)
x2−x1

f (x 2)−f (x1)

Intuitively, the method has better convergence properties compared
to the bi-section method, because it uses more information to pick
the next solution. You may interpret this as using information on the
slope, or as using a linear combination of the most recent two
solutions. In contrast, the bi-section method simply picks the mid-
point, irrespective of the change in the function values for the given
independent variable values.

1. An Example
We use the same polynomial as in the previous chapter, namely,

f (x) = x5
−2 x4

+3 x3
−4 x2

+5 x−6

and start with the same two solutions, x=-100 and x=100.

// find a zero of the polynomial
// f(x)=x^5-2x^4+3x^3-4x^2+5x-6

clc
clear

function [y]=f(x)
 y=x^5-2*x^4+3*x^3-4*x^2+5*x-6;
endfunction

epsilon=1e-8; // tolerance

- 33 -

x1=-100;
x2=100;

for nCount=1:100
 if(abs(f(x1)-f(x2))<epsilon) then break; end
 x3 = x2 - (f(x2))*(x2 - x1)/(f(x2) - f(x1));
 x1=x2;
 x2=x3;
 disp([nCount x3 f(x3)])
end

Figure 8.1. The Secant Method.

The code is a straightforward implementation of the difference
equation. The output is shown below.

.

.
 1. 1.9998 11.991803
 2. 1.9997999 11.991798
 3. 1.7071857 3.3174612
 4. 1.5952767 1.3550359
 5. 1.5180046 0.3072755
 6. 1.4953431 0.0402559
 7. 1.4919267 0.0014542
 8. 1.4917986 0.0000072
 9. 1.491798 1.314D-09
10. 1.491798 0.

Figure 8.2. The Algorithm Output.

Note that the algorithm terminates in ten steps with an error of less
than the specified tolerance, Epsilon=10-8. The loop is set to run for
100 steps. However, the loop is broken as soon as the error drops
below Epsilon. The maximum loop count is a good idea, in case the
loop never ends (for example, if one were to accidentally specify
Epsilon to have a negative value).

2. Exercises
1. Add a check at the beginning of the code to make sure that the

function value at the two initial solutions are well defined.

2. Is it possible to modify the code to find a local extremum
(maximum or minimum) of a given function? If so, how would you
accomplish this?

- 34 -

3. Pick another function and find its zero by the secant method and
the bisection method. Observe and compare the convergence
characteristics of these two methods.

- 35 -

X. AN INVENTORY MODEL
Inventory control is a fundamental topic in industrial engineering.
Inventory control deals with ordering a batch of items to be stored in
inventory. There may be differing modes of ordering the items. For
example, there may be lead times (duration from the time an order is
placed until when the order actually arrives) or orders may arrive
instantaneously, probabilistic quantities, or various discount
schemes. The items are drawn from the inventory by a prescribed
operating policy as well. Here, there may also be different
assumptions. Demand may be known and constant, or be
probabilistic with a given distribution. Items may be backlogged (not
immediately delivered but supplied to the customer at a later date.
There may be multiple items that share the inventory, or multiple
levels of inventories (e.g., a hierarchical system of distribution
centers and local inventories). Moreover, items may have a limited
self-life, as in blood stored in blood banks. Let us look at perhaps
the simplest model, which still contains the minimal necessary
components.

Consider a single item to be stored. The item is ordered in batches
of quantity Q. Placing an order has a fixed costs. This may be a
processing cost, or perhaps a shipping cost. Let each time an order
is placed cost K dollars on top of the cost of the items. Let K be
fixed, irrespective of the order quantity. Let there be a constant
demand D. Finally, holding items in inventory has a holding cost h.
This cost is per item per time unit.

In our model, we take demand, and the two costs as parameters.
That is, D, K, and h are taken to be determined externally as
requirements imposed on our system. These will be considered as
parameters. The order quantity is a decision variable. We would like
to find the best order quantity. When we say “best” we must also
define how we compare one choice of the decision variable to
another. This measure of “goodness” which will ultimately allow us
to find “the best” is called an objective value. In most industrial
engineering models, an objective function is constructed. It is a
function, because the objective is measured as a function of the
decision variables.

The dynamics for our inventory system is rather straightforward. If
we were to consider the number of items in inventory over time, we
would have a time dependent inventory level function as below.

- 37 -

Figure 10.1. Inventory Level over Time

The inventory level shown in the figure above depicts the case where
the demand is 10 items per time unit. The order quantity is 200
items, which arrive instantaneously. It follows that the order period is
20 time units.

A good – and often used – objective is to minimize cost. In this
model, we have an infinite working horizon, so the total cost will be
infinitely large. It is thus reasonable to consider the average cost per
time period. Alternatively, we can look at the cost in a single order
period and then divide this cost by the length of the order period.

1. The Model
As a first step to constructing a mathematical model, we first list the
quantities as described in the previous section. In square
parentheses, we give the unit of the variable. We use $ for cost, T
for time and # for quantity (item).

Q: order quantity [#]
D: Demand [#/T]
K: Fixed ordering cost [$]
h: Inventory holding cost [$/(#T)]

Figure 10.2. Model Variables and Parameters

We made a special point about units being used. Engineering
computations differ somewhat from the more abstract mathematics,

- 38 -

such as number theory, in that we usually deal with quantities of
tangible entities. These physical entities have not only a magnitude
but also a quantity. In many cases, we even must make conversions
from one unit to another. For example, the gravitational acceleration
may be 9.81 m/s2 or 32.17 ft/s2 depending on whether we use meters
or feet as our unit of length.

Our objective is to minimize cost per time in the long run. Looking at
Figure 10.1, we remark on another fundamental concept in systems
engineering. The inventory level starts at the order quantity and
drops linearly until it reaches zero. Then the cycle repeats. We call
this a recurrence. The order points may be regarded as renewal
points, where the system simply repeats itself. Thus, any long-term
property may be extracted from the properties of a single cycle. In
other words, the single cycle captures all of the information
regarding the system dynamics, irrespective of how long it is run.
Things simply repeat. If we are to minimize the cost per time over
the long run, it would suffice to study just a single period and
minimize the cost over just one period.

2. Cost Components
There are two components of cost in our model, which we will call C1
and C2. Both are expressed as cost per time unit ([$/T]).

The fix cost K is incurred each cycle. A cycle repeats itself when
demand D depletes the quantity Q. That is, a cycle lasts Q/D time
units. Notice that Q/D has the correct units, that is, [#/(#/T)]=[T].
So the cost attributed to ordering is C1=K/(Q/D)=KD/Q per time unit
([$/T]).

Similarly, there is an inventory holding cost. The average inventory
per cycle is Q/2 (why?). This amounts to a cost per unit time given
by C2=h(Q/2)(Q/D)=hQ2/(2D).

Total cost per time unit is thus C=C1+C2 in units of [$/T].

3. The Code
We now compute and plot C1 and C2.as well as their sum. The code is
given below.

clc
h=10 // holding cost [$/(#T)]
K=50 // fixed cost [$]
D=10 // demand [#/T]
maxQ=100;
q=1:maxQ // order quantity

- 39 -

f=[] // fixed cost
v=[] // holding cost
c=[] // total cost

// --- loop to compute costs for
// various values of q ---
for i=1:maxQ
 f(i)=K*D/i // fixed cost
 v(i)=h*i/2 // holding cost
 c(i)=f(i)+v(i) // total cost
end

// --- plot costs versus order quantity ---
scf(0) // create figure 0
plot(q',f, 'g') // green : fixed cost/time
plot(q',v, 'b') // blue : holding cost/time
plot(q',c, 'r') // red : total cost/time
xtitle('cost/time', 'Order quantity (q)');
legend(['fixed cost/time',..
'inventory holding cost/time',..
'total cost/time']);

Figure 10.3. The Code.

The equations given in the previous section are implemented. The
code simply computes the costs C1 and C2 for order quantity values
from 1 to maxQ=100. The code also plots the costs C1 and C2 as well
as their sum.

- 40 -

Figure 10.4. Cost Components.

The total cost per time is plotted in red. It is clearly seen that the
total cost has a minimum around 10.

4. Exercises
1. Modify the given code to find the optimum order quantity. That is,

the order quantity for which cost per time is minimum.

2. Modify the code to numerically differentiate the total cost per time
function. Then use a search algorithm to find the order quantity
for which the derivative of the cost per time function is zero.

3. Which of the two methods (Exercise 1 or 2) of detecting the
minimum is better? Explain.

4. Industrial engineers speak of “sensitivity analysis” which are
usually performed after an optimum is found. The idea is to
investigate how sensitive the objective function value at the
optimum solution is with respect to the given parameters or the
decision variable. Compute the following:

How much does the cost (C) change if we change the fixed
ordering cost (K) by one unit? That is, give a numerical value
for

∂C(q , K)

∂K

- 41 -

evaluated at the points K=50 and q=10. Note that K=50 is
the parameter used in the example, and that q=10 is taken as
the the ordering quantity that minimizes cost per time.

5. Repeat Exercise 4 for parameters h, and D.

- 42 -

XI. FACILITY LOCATION
Determining the optimum location of a facility is a typical industrial
engineering task. For instance, we may be interested in finding the
best location for a machining center somewhere on the factory floor.
Similarly, we may be interested in placing a distribution center
somewhere in the vicinity of several factories.

1. An Example.
An airport is to be built to service four cities. The city coordinates
are given. As the airport is built, four roads must also be constructed
linking each city to the airport. We assume that the terrain is rather
flat, and that roads are built in straight lines. What is the best
location for the airport, so that the total length of road to be
constructed is minimized?

2. The Code
We place the cities on a two-dimensional grid. We store the x and y
coordinates of the cities in vectors. The airport is to be located at
one of the lattice points on the grid. A function is written to compute
the total road length given an airport location. The code is given
below. Note that Scilab underlines the functions in its editor.

clc
clear

// Four planar points, coordinates
// in the range of [0, 99]
x=[10, 80, 35, 36];
y=[42, 9, 91, 19];
// numerically find a point to place
// a new airport, such that the total
// distance from the cities to the airport
// is minimized.

// f(a,b) gives the total distance from
// points (xi, yi) to (a,b)
function [d]=f(a, b)
 d=0;
 for i=1:4
 d=d+sqrt((a-x(i))^2+(b-y(i))^2);
 end
endfunction

Z=zeros(100,100);

- 43 -

// generate objective function values
// and keep track of the best solution

bestZ=f(1,1);
bestX=1;
bestY=1;

for i=1:100
 for j=1:100
 Z(i,j)=f(i,j);
 if Z(i,j)<bestZ then
 bestX=i;
 bestY=j;
 bestZ=Z(i,j);
 end
 end
end

disp(bestX, bestY, bestZ);

[X,Y] = meshgrid(1:100, 1:100);
mesh(X,Y,Z)

Figure 11.1. The Code

A two-dimensional array (Z) is defined. Z(i,j) holds the objective
function value for when the airport is to be located at point (i,j). Two
nested loops, one for each dimension are used. The inner loop also
keeps track of the objective function values. The minimum Z(i,j)
value as well as the coordinates (indices I and j) for which the
objective function attains its minimum, are displayed.

We must note that engineering software usually has many built-in
functions to find the minimum or maximum value of a set of
numbers. He we explicitly checked each value of the objective
function and compared it to the best value so far. We did so
explicitly to illustrate how such a search might be accomplished by a
general programming language. See the exercises for a different
implementation.

As an added feature, we create a three-dimensional plot. The
function meshgrid() creates a two-dimensional matrix. The plot
function mesh() is used to plot the objective function surface.

- 44 -

Figure 11.2. The Objective Function Surface.

For the given city coordinates, the best airport location is computed
to be (30,36) while the total road length is approximately 150.

3. Exercises
1. Assume that the objective is to minimize the distance to the

farthest city. Note that such objective functions are useful in
minimizing the worst case. For example, if we were to place a fire
station in proximity of a few neighborhoods, rather than
minimizing the total road length, it would make more sense to
minimize the farthest neighborhood.

2. In this example, all cities are placed on integer lattice points.
Similarly, we only seek airport locations on integer lattices. Modify
the code so that the grid resolution is higher. That is, the airport
may be located between lattice points.

3. Rather than checking each objective function value against the
best so far, use a built-in function to find the minimum value of the
mesh (X,Y,Z).

4. A river runs through a 100 by 100 mile grid. The course of the
river is given as N = 6* sqrt(E), where E is the east direction and N
is the north direction (a bit like x and y). A city is located at
coordinates [20,50]. A port is to be built on the river. Find the
location on the river that is closest to the city.

- 45 -

XII. COMBINATORIAL OPTIMIZATION: THE KNAPSACK
PROBLEM
The inventory model and the location model discussed in the
previous chapters are good examples of industrial engineering
optimization efforts. These two models involve smooth functions,
albeit in our computations, we look at discrete points in the
respective domains. For example, we search for the best airport
location among points whose coordinates are integers. The student
must have understood that seeking any point on the plane is also
possible. This may require different techniques, but nonetheless
possible. Our approach is a computational one. As an engineering
approximation, we understand that finding the best airport location
among lattice points is sufficient.

There is another important point to be made about these previous
models. Consider the inventory model. The objective function (cost
per time) as a function of the decision variable (order quantity) is a
smooth function. It can be seen from the graph that shows total cost
per time as a function of the order quantity, that small changes in
the decision variable makes small changes in the objective function
value. This concept is called “locality” which means if you are in the
vicinity of the optimum solution, so will the objective function be in
the vicinity of the optimum value.

Combinatorial optimization is somewhat different. It deals with sets
and subsets, the inclusion or exclusion of the elements in these sets.
Solutions are usually defined as sets. As such, the objective function
is not a smooth function of the decision variables. Rather, there is a
prescribed way of enumerating the objective function value for a
given solution (set). Understandably, changing one element of an
optimum solution set does not necessarily give an objective function
value in the vicinity of the optimum. This makes combinatorial
optimization problems qualitatively different. It also makes
computations more demanding.

1. An Example
The knapsack problem is well known in industrial engineering. Many
industrial engineering problems are formulated as knapsack
problems. Moreover, the knapsack problem encapsulates all of the
important aspects of combinatorial optimization in a concise manner.

Consider a knapsack to be filled with items. Each item has a
specified weight. Each item also has a specified utility value. The
knapsack has a weight limit, which we call its capacity. The problem
is to determine which items to put into the knapsack in order to

- 47 -

maximize the total value of the items chosen. Meanwhile, the total
weight of the items must not exceed the given capacity. From a set
theoretic viewpoint, the set of all items is given. We are asked to
select a subset, so that the capacity constraint holds and the total
value is maximized.

We first compute a solution by total enumeration. Consider the
following code.

clc // clear the console
clear

w=[90 12 32 22 14 31]; // weight
v=[1 14 41 53 24 47]; // value
c=48; // capacity
n=[1 2 3 4 5 6]; // items

// number of possible solutions (ask why?)
count=2^6;
tv=[]; // solutions: total value
tw=[]; // solutions: total weight
s=zeros(count,6);

for i=1:count;
 k=i;
 tv(i)=0;
 tw(i)=0;
 for j=1:6
 s(i,j)=pmodulo(k,2);
 k=floor(k/2);
 if s(i,j) then
 tw(i)=tw(i)+w(j);
 tv(i)=tv(i)+v(j);
 end
 end
 if tw(i)>c then tv(i)=-1; end;
end

// start with solution 1 as the best
best_index=1;
best_value=tv(1);

for i=2:count
 if(tv(i)>best_value) then
 best_index=i;
 best_value=tv(i);
 end

- 48 -

end

disp("--- solution ---")
printf("items loaded: ");
for j=1:6
 if s(best_index,j) then
 printf("%d ", j);
 end
end
printf("\n");
printf("best value : %d\n", best_value);
printf("total weight: %d (c=%d)\n",.. tw(best_index),
c);

Figure 12.1. The Code

The code gives an example with 6 items to be placed in a knapsack
with capacity 48. The vector w contains the weights of the items.
Similarly, the vector v contains the values. We generate all possible
combinations. For this, consider that there is a separate decision for
each item: to be placed in the knapsack or not. Thus, the total
number of combinations is 26. We set the variable count=26.
Similarly, a solutions array s is used. The array has count=26 rows
and 6 columns. Each row of s corresponds to a possible combination.
We compute combinations at row k successively dividing k by 2 and
checking if it is odd or even. The Scilab function pmoluo() is used for
this purpose. If odd, we assume that the item is to be loaded. In this
case, we add its value and weight to vectors tv and tw, respectively.
If the weight exceeds the capacity, we mark the value tv(i) as -1, so
that it is never selected as a solution.

In a separate loop, we scan the values and identify the best one. Its
index is also saved. Finally, the solution is printed out.

 --- solution ---
items loaded: 2 4 5
best value : 91
total weight: 48 (c=48)

Figure 12.2. Code Output.

- 49 -

2. Exercises
1. The given example code fixes the number of items to 6. Modify

the code so that the number of items is defined by a variable (N)
at the top of the code. Generate random value and weights in the
range of 1 to 100. Run the code for various values of (N). Measure
how long it takes to find a solution. What is the practical limit of
(N)?

2. Consolidate the given example code to keep track of the best
value and the index to which this corresponds in the first loop. This
way, the second loop may be eliminated. Does this improve run
time?

3. Modify the code to print out alternative solutions, when they exist.

- 50 -

XIII. HEURISTICS FOR COMBINATORIAL OPTIMIZATION: THE
KNAPSACK PROBLEM
We continue our discussions on the knapsack problem that was
introduced in the previous chapter. As we observe, the exact
solution by total enumeration requires the evaluation of 2N different
subsets. The computational difficulty of this approach grows
exponentially with N. Note that 2N eventually grows more rapidly
than any polynomial in N, e.g. N2 or N3. Case in point, 2N surpasses
N2 at N=5, and N3 at N=10. Afterwards, the exponential quickly
outstrips the polynomials. At N=20, for example, while N2=400 and
N3=8000, 2N reaches the value of 1,048,576. This means that
sooner or later, we will reach a practical computational limit on N.

The good news is that in engineering applications, it often suffices to
find good solutions, if not the best (optimum). Moreover,
engineering applications usually concern physical systems, where
the problem reflects this physical structure. For instance, it was
mentioned that quantities in engineering, unlike abstract
mathematics, almost always have units. The knapsack problem is a
good example of this. We want to maximize the value packed into
the knapsack with items of varying value and weight. This already
suggests solution techniques that would yield better solutions than
randomly selecting the items. Such intuitive solution techniques are
called “heuristics.” We present such a heuristic in this Chapter.

1. A Heuristic for the Knapsack Problem
Since we are interested in packing as much value into the knapsack,
we would like to pick items with high value but low weight. Both of
these desires, low weight and high value, could be addressed if we
compute the value-per-weight measure for each item. Then, we may
proceed by stuffing the knapsack with items in decreasing order of
value-per-weight, until the capacity is reached. Note that, although a
sensible one, this procedure is not guaranteed to yield the optimum
solution. Consider, for example the case of four items with weight
and values given as follows.

- 51 -

Item Weight Value Value/Weight

1 4 12 3

2 4 11 2.75

3 3 8 2.67

4 3 8 2.33

Figure 13.1. An Example.

If the knapsack has capacity 10, and we apply our heuristic, we pick
items 1 and 2, since they have the highest value per weight. Their
total weight will reach 8, and thus leave no room for the other items.
The total value packed would be 12+11=23. This is clearly not the
optimal solution. Packing items 1, 3, and 4 would result in a value of
28 and a combined weight of 10.

2. The Code
We now give sample code that implements the heuristic.

clc // clear the console
clear
N=30;
w=floor(rand(N,1)*10+1); // weight
v=floor(rand(N,1)*100); // value
c=72; // capacity

disp("--- heuristic ---")
disp("--- v ---")
disp(v)
disp("--- w ---")
disp(w)
r=v./w; // element-wise operation
disp("--- r ---")
disp(r)

disp("--- included indeces ---")
l=0;
value=0;
for k=1:N // repeat N times

 max_index=1;
 max_ratio=r(1);

 for i=2:N

- 52 -

 if(r(i)>max_ratio) then
 max_ratio=r(i)
 max_index=i;
 end
 end

 if (l+w(max_index)<=c) then
 l=l+w(max_index);
 disp(max_index);
 value=value+v(max_index);
 end
 r(max_index)=-1;
end

disp("--- value ---")
disp(value)
disp("--- load ---")
disp(l)

Figure 13.2. The Code.

The code solves the heuristic for N items. The item weights and
values are randomly generated and held in vectors w and v,
respectively. The vector r computes the value-to-weight ratio. The
main loop is executed N times. At each iteration, we find the item
with the highest value-to-weight ratio, and place it into the knapsack,
provided that there is enough capacity left. Once an item is placed,
or considered but disregarded, due to its weigh, we mark its ratio as
-1. This prevents the item from being considered during the future
iterations, since all N items have nonnegative ratios.

The code runs in reasonable time for N up to a few thousand in a few
seconds.

3. Exercises
1. Run the heuristic for different values of N and measure the

computation times. Plot the time the heuristic takes to solve
problems as a function of N. What type of function is this?

2. Combine the code with the one given in the previous chapter.
Solve a number of randomly generated knapsack problems, both
to optimality, and using the heuristic. Find out how often the
heuristic finds the optimum solution.

3. (Difficult) Are there special cases where the heuristic is
guaranteed to find the optimum solution to the knapsack problem?

- 53 -

XIV. COMBINATORIAL OPTIMIZATION: THE TRAVELING
SALESMAN PROBLEM
A salesman is to conduct a tour to visit a set of cities. Each city is to
be visited once and only once. The salesman is to complete the tour
by returning to the starting point. Given a set of N cities, say {1, 2,
3,.. ,N} it is easy to schedule such a tour. In fact, any permutation of
the numbers 1 to N would be a tour. Since the salesman may start at
any city, we can fix the starting point, say city 1. This gives us (N-1)!
possible tours. The twist comes when city-to-city distances are of
concern. If the salesman wants to complete the tour in the shortest
possible total travel distance, then the problem becomes very
difficult. In fact, one is almost forced to evaluate all (N-1)! tours and
find the shortest. As the knapsack problem that required in the order
of 2N evaluations, the Traveling Salesman Problem (TSP) has a
computational difficulty that surpasses any polynomial-time solution.
For, N! will surpass any polynomial in N (say Nk for any k>1). Even
N10, which grows quite rapidly, is surpassed by N! at N=15.

The TSP is of interest to industrial engineers, since many scheduling
problems reduce to the TSP. Consider a job shop that is to paint N
automobiles, each a different color. Although each paint operation
takes the same time, setting up the equipment depends on the
colors. If a white automobile is to be painted after a black one,
cleaning the paint guns takes more time compared to the case where
a black automobile is to be painted after a white one. This is
because a little dark paint left in the paint gun will show in the lighter
color, while the effect in the reverse case will go unnoticed.
Scheduling these N automobile paint jobs is like traveling through N
cities, where each city is to be visited once.

1. The Code
The following code solves a TSP by total enumeration.

clc // clear the console
clear

N=4; // number of cities

// random [0,100] distance matrix
// from row r to column c
d=round(rand(N,N)*100);
disp("--- random distance matrix ---")

- 55 -

disp(d);

c=[1:N]; // cities
a=perms(c); // permtations of cities

// number of possible solutions
count=factorial(N-1);

t=[]; // total tour lengths

disp("--- possible tours : lengths ---")
best_tour=0;
min_length=%inf;

for i=1:count;
// compute tour length for tour i
 t(i)=d(a(i,N),a(i,1));
 for j=1:N-1
 t(i)=t(i)+d(a(i,j),a(i,j+1));
 end
 if(t(i)<min_length) then
 min_length=t(i);
 best_tour=i;
 end

disp([t(i), a(i,:)]);
end // end of tour i

disp("--- solution ---")
printf("min tour length: %d\n", min_length);

disp(a(best_tour,:));

Figure 14.1. The Code

A random distance matrix is generated with integer values in the
range of [0, 100]. The vector c contains the city indices, that is,
c=[1, 2, ...N]. The array a holds all permutations of the city indices.
Each row of array a is a permutation of the indices in c. All (N-1)!
tours are evaluated and the corresponding tour lengths stored in
vector t. As we evaluate tour lengths, we keep track of the shortest
tour by saving its index in best_tour and its length in min_length.
The code terminates by displaying the solution.

- 56 -

2. Exercises
1. Find examples that can be modeled as a TSP in everyday life.

2. Change N and make a few runs. Plot the average time it takes to
solve the TSP as a function of N. What is a practical computational
limit to N?

- 57 -

XV. A HEURISTIC FOR THE TRAVELING SALESMAN PROBLEM
The TSP is a computationally difficult problem. As the number of
cities (N) increases, the effort to find the optimum solution becomes
prohibitively expansive. Hence, one often resorts to heuristical
solutions. A most intuitive heuristic is the so-called “nearest
neighbor” approach. The idea is simple: start with a city, and go to
the nearest city. At each step, find the nearest city not yet visited
and go there next. Although this heuristic may not always find the
optimum solution, it nonetheless finds good solutions, usually much
better than a simple random ordering.

1. The Code
In an attempt to make the code more understandable, we make use
of two functions. The function Visited(tour, i) takes a vector (tour)
and an index (i). If the index is an element of the vector (tour), then
the function returns 1, representing the Boolean value “TRUE”.
Otherwise, it returns the value 0, representing “FALSE”.

// this function returns true (1)
// if city i is already in the tour
// else it returns false (0)
function result=Visited(tour, i)
result=0; // assume not visited
for j=1:length(tour)
 if(tour(j)==i)
 result=1;
 break;
 end;
end
endfunction

Figure 15.1. The Function “Visited()”.

The next function GetNearestCity(tour, d) takes a vector (tour) that
contains the indices of the cities in the partial tour, and a distance
matrix (d). It returns the index of the unvisited city that is nearest to
the last city in the partial tour. The number of cities is deduced from
the size of the distance matrix (d).

// this function returns the nearest
// unvisited city from the last city
// in the tour

- 59 -

function NearestCity=GetNearestCity(tour, d)
LastCity=tour($);
NearestCity=0; // to be replaced
DistanceToNearest=%inf;

for i=1:size(d, 'r')
 if ~Visited(tour, i)
 if(d(LastCity, i)<DistanceToNearest)
 DistanceToNearest=d(LastCity,i);
 NearestCity=i;
 end
 end
end
endfunction

Figure 15.2. The Function “GetNearestCity()”.

Using functions that meaningfully encapsulate a logical task is
central to structured programming. This not only improves code
readability, but it positively affects code performance. It also
facilitates code re-usability, since general-purpose functions may be
imported to other code applications. In fact, writing general-purpose
functions and combining these in libraries are common practice in
software.

With the aid of the two functions, the main code becomes quite
straightforward.

N=100; // number of cities

// random [0,100] distance matrix
// from row r to column c
d=floor(rand(N,N)*100);

tour=[1]; // start from city 1
for i=2:N
j=GetNearestCity(tour, d);
tour(i)=j;
end

// compute tour length for the tour
 t=d(tour(N),tour(1));
 for j=1:N-1
 t=t+d(tour(j),tour(j+1));
 end

- 60 -

// print city sequence for the tour and the tour length
 disp(tour);
 disp(t);

Figure 15.3. The TSP Heuristic Main Code.

The code runs for quite large problems, several hundred cities, in a
few seconds. An exact solution by total enumeration for even 100
cities would be impossible, as 100! is about 10158. Considering that
the universe is about 1017 seconds old, and that the fastest current
supercomputer can execute about 50 PLOPS (50x1015 floating-point
instructions per second), it would take the fastest computer today
10124 times the age of the universe to go through all possible 100-city
tours. Note that 10124 is a very large number indeed.

10124=10,000,000,000,000,000,000,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0
00,000,000,000,000,000,000,000,000,000,000,000,000.

Our supercomputer must run this many times the age of the universe
to evaluate all 100-city tours.

2. Exercises
1. Plot the tour length obtained from the nearest neighbor heuristic

as a function of N.

2. Use the code to evaluate how well the nearest neighbor heuristic
performs compared to random tours. First evaluate the length (R)
of the random tour (the sequence 1, 2, 3,..N), and then evaluate
the tour length obtained from the heuristic (H). Plot the ratio H/R
as a function of N. Suggest a functional form for this curve.

3. Find out how fast the nearest-neighbor heuristic works as a
function of the number of cities. Generate a several random
problems with N in the range of 100 to 1000 and plot the CPU
times against N.

4. (Difficult) Find information on other TSP heuristics and code these.

- 61 -

XVI. THE ASSIGNMENT PROBLEM
Not all combinatorial industrial engineering problems are difficult. A
case in point is the so-called assignment problem. The problem tries
to assign N jobs to N different machines. The cost of each job on
each machine is known. The objective is to assign each job to a
unique machine so that the total cost is minimized.

Although at first glance, it is a combinatorial problem. There are N!
different ways we can order the jobs. Each ordering corresponds to
an assignment. Nonetheless, compared to the TSP, the assignment
problem has a rather simple solution. The best known algorithm for
the assignment problem is the “Hungarian Algorithm.” Its
computational difficulty is of polynomial order. More specifically,
given N jobs, the number of computations required to find a solution
is in the order of N4 (recent improvements have further reduced the
order). This order of complexity is much better than total
enumeration by considering all N! assignments.

The reason why some combinatorial problems are computationally
difficult (exponential-time algorithms) while others are not
(polynomial-time algorithms) is intuitively addressed by considering
the structure of the problem. The assignment problem has a
polynomial-time algorithm. Also note that the assignment problem
has a lot more structure as well. The number of jobs and the number
of machines is equal. Each job is assigned to one machine, and each
machine is assigned only one job. Such restrictions limit the feasible
region of the decisions, and hence serve to limit the complexity of
the solution process.

1. The Code
We use total enumeration to solve the assignment problem.
Although total enumeration is way overkill, it is simple to code.
Unfortunately, as N gets larger, total enumeration becomes
computationally prohibitive.

clc // clear the console

// cost matrix, job at row r is assigned
// to machine at column c
c=[1 2 3 4 5;
 1 4 3 5 4;
 2 1 5 2 1;
 6 3 2 5 6;
 6 3 5 2 4];

- 63 -

j=[1 2 3 4 5]; // jobs
a=perms(j); // permtations of jobs
count=factorial(5); // number of solutions
s=[]; // assignment costs

disp("--- assignment costs ---")
disp(c)

disp("--- possible assignments : costs ---")
best_index=1;
best_cost=%inf;

for i=1:count;
 s(i)=0;
 for j=1:5
 s(i)=s(i)+c(j, a(i,j))
 end

 if(s(i)<best_cost) then
 best_cost=s(i);
 best_index=i;
 end
 disp([a(i,:), s(i)]);
end

disp("--- solution ---")
printf("best cost: %d\n", best_cost);

// display alternative solutions
for i=1:count
 if(s(i)==best_cost) then
 disp(a(i,:));
 end
end

Figure 16.1. The Code.

The code works well for small N. In this case (N=5) the solution is
readily computed in a fraction of a second.

--- assignment costs ---

 1. 2. 3. 4. 5.
 1. 4. 3. 5. 4.
 2. 1. 5. 2. 1.

- 64 -

 6. 3. 2. 5. 6.
 6. 3. 5. 2. 4.
 --- solution ---
best cost: 8

2. 1. 5. 3. 4.

Figure 16.2. The Output.

The solution indicates that jobs 1, 2, 3, 4, and 5 are assigned to
machines 2, 1, 5, 3, and 4, respectively.

Job Machine Cost

1 2 2

2 1 1

3 5 1

4 3 2

5 4 2

Total 8

Figure 16.3. The Optimal Assignment.

2. Exercises
1. Rather than the costs, let the assignments yield different profits on

different machines. That is, instead of a cost matrix, we now
consider a profit matrix. Modify the code to find the maximum
profit assignment.

2. Let the cost matrix give the machining times for each job on each
machine. Once the assignment is made, let all machines start at
the same time. Find the assignment that minimizes makespan.
That is, minimize the time it takes all jobs to finish.

3. Modify the task in Exercise 2 to show all possible alternative
solutions.

4. (Difficult) Investigate the Hungarian Algorithm to solve the
assignment problem. Code the algorithm and investigate the
performance advantages over the present code.

- 65 -

XVII. SCHEDULING: THE SINGLE MACHINE CASE
Scheduling problems in industrial engineering often lead to
combinatorial optimization. The simplest scheduling problem is
perhaps the single machine, N jobs case. Here, we have N jobs, each
associated with a processing time, available at the start. The
machine is to process all jobs. The decision involves the sequence in
which the jobs are to be processed.

Let us also define a few other keywords. The so-called “flowtime” for
a job is the total time it spends in the system. First the job waits for
its turn on the machine, and then, it undergoes the operation. The
latter is the processing time for the job, which is assumed to be
constant and known. Sometimes jobs have “due dates”. The
difference between the due date and the completion time is called
lateness. Lateness can be positive (the job is finished after the due
date) or negative (the job is finished before the due date), or zero
(the job is finished exactly on the due date). Tardiness is also used
to indicate if a job is late. If the job finishes on or before its due date,
then tardiness is zero. If the job is finished after its due date, then
tardiness is the same as lateness. If a job is completed before its
due date, than the difference between the due date and the
completion time is called the “earliness”.

1. Minimize Average Flowtime
The code given below defines jobs with processing times. As a brute-
force attempt, we once again consider all possible sequences of the
jobs. That is, N! possible schedules. Note that the total processing
time does not change for these different schedules. The total
processing time is computed once and saved as a global variable
(tpt). A global variable is a variable that is visible to all parts of the
code, including the functions.

clc // clear the console
clear
N=6; // number of jobs
MaxP=100; // max processing time
p=ceil(rand(N,1)*MaxP); // processing times
tpt=0; // total process time

disp(p);

Figure 17.1. Generating Random Jobs.

For each, we compute an average flow time. The function

- 67 -

GetFlowtime() is defined to simplify the computations.

function ft=GetFlowTime(s, k)
ft=0;
 for j=1:N
 ft=ft+p(s(j));
 if s(j)==k then break; end
 end
endfunction

Figure 17.2. Computing the Flowtime of Job k for Schedule s.

The function takes two arguments. The first (s) is a vector of job
indices in a given sequence. The sequence determines the schedule.
The second argument is the index of the job whose flowtime is to be
computed. Note that the number of jobs (N) and the processing
times (p) are defined as global variables before the function
definition. Thus, the function already has access to these variables.

We next define the jobs, the number of schedules, and a permutation
matrix (a) whose rows are the possible schedules (permutations of
job indices). The total processing job (tpt) was defined as a global
variable with an arbitrary value. Here we compute its value and
assign it to the variable.

jobs=[1:N];
a=perms(jobs); // permutations of jobs
count=factorial(N); // number of schedules
f=[]; // average flow time

for i=1:N
tpt=tpt+p(i);
end

Figure 17.3. Computing the Flowtime of Job (k) for Schedule (s).

The remainder of the code is quite straightforward. We compute the
average flow time for each schedule and keep track of the best
average in the process of doing so. The code terminates with
displaying the schedule that yields the lowest average flowtime.

// ---compute the average flowtime ---
best_ave_flowtime_index=0;
best_ave_flowtime=%inf;

- 68 -

for i=1:count;
 f(i)=0;
 for j=1:N
 f(i)=f(i)+GetFlowTime(a(i,:), j);
 end
 f(i)=f(i)/N;

 if (f(i)<best_ave_flowtime) then
 best_ave_flowtime=f(i);
 best_ave_flowtime_index=i;
 end
end

disp("--- solution ---")
disp(a(best_ave_flowtime_index, :));
disp(best_ave_flowtime);

disp("flow times: ");
 for j=1:N
 printf("%6.2f ",.. GetFlowTime(..
 a(best_ave_flowtime_index,:),..
 j));
 end

Figure 17.4. Finding the Schedule with Best Average Flowtime.

As our approach looks at all possible schedules, once again, the
computational effort is quite high. We must look at N! possible
schedules and select the best among them. The output of the code
is shown below.

 29.
 9.
 63.
 35.
 71.
 53.

 --- solution ---

 2. 1. 4. 6. 3. 5.

 115.83333

- 69 -

 flow times:
38.00 9.00 189.00 73.00 260.00 126.00

Figure 17.4. Code Output.

There are 6 jobs with randomly generated processing times. The
processing times are 29, 9, 63, 35, 71, and 53. The sequence that
minimizes the average flowtime is 2-1-4-6-3-5. The minimum
average flow time is computed as 115.83.

2. Exercises
1. You may notice that the sequence 2-1-4-6-3-5 that minimizes the

average flowtime in the example also follows a certain logic. It is
in the order of processing times, from the lowest to the highest. In
scheduling, this sequence is called the “Shortest Processing Time”
ordering, or SPT for short. Run several examples and observe if
SPT minimizes the average flowtime in each trial.

2. Modify your code to generate random due dates. Then compute
the average tardiness for each schedule. Does SPT also minimize
average tardiness?

3. With randomly generated due dates. compute the maximum
tardiness for each schedule. Does SPT minimize the maximum
tardiness among jobs?

4. In Exercise 2 above, check if ordering the jobs according to their
due dates minimizes the maximum tardiness.

5. (Difficult) Return to the problem of minimizing the average
flowtime for N jobs. Suppose that we have two machines. In
general, we would have different processing times for a given job
on each machine. To start with, let us assume that the job
processing times are the same for each machine. Write code to
generate all possible schedules. Note that each job is processed
either on machine 1 or machine 2. Among the possible schedules,
find the one that minimizes the average flowtime.

6. (Difficult) Repeat Exercise 5, but with due dates. Find the schedule
that will minimize the maximum tardiness.

- 70 -

XVIII. NETWORK MODELS: SHORTEST PATH
A network is a collection of nodes and arcs. A network is also called
a graph, and hence the term “graph theory” in mathematics and
operations research. Similarly, nodes and arcs are also known as
vertices and edges. The nodes and the arcs may have associated
attributes. Many industrial engineering models involve networks.
For example, activities with precedence relations are easily modeled
by networks. This becomes handy in project management. The
Traveling Salesman Problem discussed in the previous chapters is
also defined on a network of cities. Similarly, decision trees and
probabilistic “what if” scenarios may be modeled as networks. A
flowchart is essentially a network, where the nodes contain
information about the operations performed. Even the assignment
problem we discussed may be considered as a network problem.
Here, the network connects elements of a set of jobs to the elements
of a set of machines.

Here, we consider a simple network, one that is actually a map of
cities and roads. The arc attributes are the lengths of the roads. We
pick an origin and a destination. We want to find the best path to
travel from the origin to the destination. Choosing the objective to be
to minimize travel distance is reasonable. This problem is called the
“shortest path” problem in networks. It is a fundamental problem
that we encounter a lot in industrial engineering applications. For
instance, the related problem, the “longest path” determines project
completion time if the nodes are the various stages of the project,
and the arc lengths represent time to reach a stage from a previous
stage.

1. An Example
Consider the following example. Here we have 6 cities. The
numbers associated with the arcs are the road lengths between the
cities. Note that we use undirected arcs. In this case, the distance
between adjacent cities is the same in either direction. It is also
possible to consider different lengths for opposite directions. This is
the case in air travel, where a tail wind or a head wind makes a
difference.

- 71 -

Figure 18.1. The Network (Origin 1, Destination 6).

Here, we want to find the path from the origin (City 1) to the
destination (City 6) that has the shortest distance. The shortest path
is easily detected by inspection. However, when the number of
nodes and arcs increase, the task of finding the shortest path may no
longer be so trivial.

2. An Algorithm
Dijkstra'a algorithm is used to find the shortest path. The algorithm
is very intuitive. We shall use it without proving that it works.
Throughout the algorithm, we work with two sets: the visited nodes,
and the unvisited nodes. The two sets are complements of each
other. In the beginning, the visited nodes contain only the origin. All
other nodes are unvisited. Each node has a distance from the origin.
This distance is zero for the origin. In the beginning, the distance
from the origin is infinity for all unvisited nodes.

At each iteration, we consider all arcs from visited nodes to unvisited
nodes. Essentially, we are considering how we can go to an
unvisited node, from one of the visited nodes. Now, each visited
node has a distance associated with it. It measures how far that
visited node is from the origin. Suppose we travel on an arc i to j,
where i is a visited node and j is an unvisited node. By doing so, we
will have visited previously unvisited node (j). We can compute the
total distance from the origin to this newly visited node (j) by adding
to the arc length to the distance from the origin to node (i). We do
not immediately take an arc, but consider all possible arcs i to j,
where node i is visited and node j is unvisited. For each case, we
compute and tentatively assign to the nodes j, their computed total
distance from the origin. Among all possible arcs, we pick the one
that takes us to a node j, whose total distance from the origin is the
smallest. Intuitively, we next visit that previously unvisited node
which is the closest to the origin.

- 72 -

Thus, at each iteration, we add one more to the set of visited nodes.
This node is removed from the unvisited nodes. Given N nodes,
since at each iteration, we visit another node, after N-1 iterations,
the algorithm will terminate (not N but N-1, since the origin was
already added to the set of visited nodes). The algorithm may be
terminated sooner if we reach our destination, while some nodes
remain unvisited.

3. The Code
We first define a distance matrix. Element (i,j) f the matrix is the
distance from node i to node j.

clc // clear the console
clear

// distance matrix (symmetric)
d=[%inf 1 1 %inf %inf %inf;
 1 %inf 2 2 1 %inf;
 1 2 %inf %inf 3 %inf;
 %inf 2 %inf %inf 1 3;
 %inf 1 3 1 %inf 1;
 %inf %inf %inf 3 1 %inf];

disp(d);
N=size(d,1);

Figure 18.2. The Distance Matrix.

Note that in this case, the distance matrix is symmetric. The
algorithm works equally well if the distance matrix is not symmetric.

origin=1; // origin node
destination=6; // destination node

visited=[origin]; // visited nodes

// unvisited nodes
for i=1:N
 if(i<>origin) then unvisited($+1)=i; end
end

// shortest distance from origin to the nodes
for i=1:N distance(i)=%inf; end

- 73 -

distance(origin)=0;
previous=zeros(N);

Figure 18.3. The Distance Matrix.

Next we specify the origin and the destination and construct the sets
“visited” and “unvisited”. The vector “distance” whose elements
give the distance from the origin to the nodes is initialized. Finally,
the vector “previous” is initialized to all zeros. Element j of this
vector will hold the city index i, if arc i-to-j is used to reach city j (that
is, if arc i-to-j is on the shortest path).

After the initialization steps, we are now ready to implement the
algorithm. The main loop executes as a new node is added to the set
of visited nodes at each iteration.

while length(unvisited)
 best_i=0;
 best_j=0;
 best_distance=%inf;

 for i=1:length(visited)
 from=visited(i);
 for j=1:length(unvisited)
 to=unvisited(j);
 if distance(from)+d(from, to)..
 < best_distance then
 best_distance=..
 distance(from)+d(from, to);
 best_i=i;
 best_j=j;
 end
 end
 end
 from=visited(best_i);
 to=unvisited(best_j);
 previous(to)=from;
 distance(to)=best_distance;
 visited($+1)=to;
// remove node 'to' from unvisited,
// add it to the set visited
 unvisited(best_j)=[];
end

Figure 18.4. The Main Loop.

- 74 -

At each iteration, the main loop considers all possible arcs from
visited nodes to unvisited nodes. The tentative total distance from
the origin to the unvisited node is compute. The lowest such total
distance is recorded (best_distance) as well as its source node
(best_i) and its destination node (best_j). We also keep track of the
node from which we have reached the newly visited node. The
vector “previous” holds the index (best_i). The closest unvisited
node is then removed from the set of unvisited nodes and added to
the set of visited nodes. We run the algorithm until all nodes are
visited.

// construct the path backwards
reverse_path=[destination];
prior=previous(destination);
while prior<>origin
 reverse_path($+1)=prior;
 prior=previous(prior);
end
reverse_path($+1)=origin;

path=reverse_path($:-1:1);
disp("shortest path");
disp(path);
disp("distance");
disp(distance(destination));

Figure 18.5. Constructing the Shortest Path.

When the main loop terminates, we have collected all the
information needed to construct the shortest path. The vector
“previous” gives the node from which we have reached a given node.
Starting from the destination, we work backwards to construct the
shortest path. The indices, working backwards, are stored in the
vector “reverse_path”. This needs to be reversed to find and report
the shortest path in the forward direction. The code terminates by
reporting the shortest distance to the destination and the path by
which to achieve this distance.

4. Exercises
1. Run the code for different distance matrices and different number

of cities.

2. Generate random symmetric distance matrices and run the
algorithm.

- 75 -

3. Generate random non-symmetric distance matrices and run the
algorithm.

4. Run several random examples and plot average execution times
versus the number of nodes, N.

5. Project Management involves a set of project stages that have a
precedence relationship. The network model is similar to the
example given in this chapter. However, the arcs are directed to
indicate the precedences. The nodes represent the project stages.
The arcs lengths are the time it takes from one project stage to the
next. The project has an origin, as in this case, and a destination.
The destination stage represents project completion. Unlike the
example here, the project terminates after all stages are
completed. The time to complete the project is thus the length of
the longest path from the source to the destination. Modify the
code to find the longest path, rather than the shortest one.

- 76 -

XIX. RECURSIVE NETWORK ALGORITHMS: FIND A PATH
Recursion is a powerful conceptual and practical concept. Simply
stated, a function is recursive if it calls itself. Rather than a lengthy
discussion, let us illustrate recursion with an example. Suppose you
want to write a function that returns the factorial of a nonnegative
integer. The following function is a straightforward implementation.

function nFact=getFactorial(n)
 nFact=1;
 for i=1:n
 nFact=i*nFact;
 end
endfunction

Figure 19.1. A Function to Compute Factorials.

The function implements a loop from 1 to the given integer n, and
multiplies the series of number, 1,2,...n to find the factorial. Now,
consider the following implementation.

function nFact=getFactorialRecursive(n)
 if(n<=2) then
 nFact=n;
 else
 nFact=n*getFactorialRecursive(n-1);
 end
endfunction

Figure 19.2. A Recursive Function to Compute Factorials.

The function in Figure 19.2 is a recursive function, since it calls itself.
The logic is elegant. When the factorial of n is to be computed, if n is
less than or equal to 2, then the factorial is simple n. Otherwise, the
factorial of n is n times (n-1)!. In order to compute (n-1)!, the
function calls itself. Thus the recursion.

If recursion appeals to you, then you have a good sense of
engineering intuition. The advantages and disadvantages of both
these approaches is an interesting topic of computer engineering,
albeit outside the scope of our elementary textbook.

1. Find A Path From Source to Sink
We now use recursion in a more demanding application. Consider a
network with undirected arcs through which there is a flow of given

- 77 -

capacity. For example, this could be a road network, where the
capacity denotes the number of vehicles that can travel through that
arc in an hour. We use a “from-to”-type matrix to define the arc
capacities. Element (i,j) of the capacity matrix is the capacity on the
arc that goes from node i to node j. Note that if the arcs are
undirected, then the capacity matrix will be a symmetrical matrix. If
an arc does not exist between the nodes, then the corresponding
capacity is simply 0.

The arc capacities are written as a matrix. Consider, for example,
the following capacity matrix.

// capacity matrix (undirected/symmetric)
capacity=[0 10 31 0 0 0;
 10 0 22 24 13 0;
 31 22 0 0 37 0;
 0 24 0 0 13 34;
 0 13 37 13 0 12;
 0 0 0 34 12 0];

Figure19.3. The Capacity Matrix.

The rest of the code relies on a single recursive function. Before we
discuss the function, let us present the code.

origin=1; // origin node
destination=6; // destination node

visited=[origin]; // visited nodes

// unvisited nodes
unvisited=[]; // unvisited nodes
for i=1:N
 if(i<>origin) then
// unvisited($+1)=i;
 unvisited=[unvisited,i];
 end
end

path=getPath(visited, unvisited,..
 capacity, destination)

if(path($)==destination) then
 disp("path:");
 disp(path);
else

- 78 -

 disp("path not found!");
end

Figure19.4. The Main Code.

As seen, the code relies on the function getPath() to actually find a
path from the origin to the destination. The code defines the origin
and the destination as nodes 1 and 6, respectively. We make use of
two vectors, namely “visited” and “unvisited”. These vectors
partition the set of nodes. These vectors are initialized before we call
getPath(). The vector “visited” initially includes only the origin, and
the vector “unvisited” contains all nodes except the origin.

The function getPath() takes as arguments these two vectors, the
capacity matrix, and the destination node. It returns the node
indices of the path from origin to destination as a vector. The
function is now given below.

function path=getPath(head, unvisited,..
 cap, dest)
 path=head;
 from=head($);
 for i=1:length(unvisited)
 to=unvisited(i);
 if(cap(from,to)==0) then continue; end
 if(to==dest) then
 path=[head,to]; // path found
 break;
 else
 newHead=[head,to];
 newUnvisited=unvisited;
 newUnvisited(i)=[];
 path=getPath(newHead, newUnvisited,..
 cap, dest);
 if(path($)==dest) then break; end
 end // if
 end
endfunction

Figure19.5. The Function getPath().

The function takes a partial path, named “head”, that starts from the
origin. Any node that is not in the path is in the set “unvisited”. The
capacity matrix and destination nodes are also specified. The
function simply goes through the unvisited nodes and tries to append

- 79 -

it to the partial path. These unvisited arcs are named “to” in the
code. The last node in the partial path is named “from”. If the
capacity of the arc (from, to) is zero, then the loop simply continues.
In this case, the arc (from, to) does not exist, since the capacity is
zero. If however, the arc exists, it is appended to the partial path.
This augmented partial path is named “newHead”. Similarly, a new
vector (newUnvisited) of unvisited nodes is formed, and the node
“to” is removed from this vector. If the node “to” is the destination
node, we break out of the loop, since the path is now found.
Otherwise, with a new partial path and a new vector of unvisited
nodes, the function calls itself, and thus invokes a recursion. Again,
if the end of the returned path is the destination, we are done. We
break out of the loop. If not, we try another node as the “to” node
and repeat.

You may have noticed that at the beginning of the function, we set
path=head. This is done, so that, if no path is found, the function
return value would be undefined. This way, the function returns the
partial path. It is up to the calling program to check if the path
terminates at node “destination”.

2. Exercises
1. Write a small program and implement the factorial functions given

at the beginning of this chapter.

2. Change the capacity matrix and run the code. Also try a network
where there is no path from the origin to the destination. Does the
code run as intended?

3. Modify the function getPath() so that besides the path, it returns a
Boolean variable which indicates whether or not a path has been
found from the origin to the destination.

4. (Difficult) Write a program that finds a path from the origin to the
destination but without the use of recursion. Compare the two
versions, with and without recursion. Discuss the benefits of each
approach.

- 80 -

XX. NETWORK MODELS: MAX FLOW
This chapter builds upon the previous chapter. We will use the code
developed in the previous chapter to find the maximum possible flow
from the origin to the destination. The method is referred to the
Ford-Fulkerson algorithm in the literature. The idea is rather simple.
We try to find a path, as in the previous chapter, from the origin to
the destination. If such a path exists, we find the maximum flow
along that path. As expected, the maximum flow is the minimum of
the arc capacities along the path. We then remove the flow along
the path from the capacities of the arcs on the path. A path with
positive flow is called an “augmenting path”. We repeat until no
further augmenting paths exist.

1. Support Functions
In addition to the function getPath() discused in the previous chapter,
we make use of two other functions. The function getPathMaxFlow()
takes the vector path whose elements are the indices of the nodes
on the path, and the capacity matrix. The function traverses the path
and returns the minimum capacity of the arcs on the path. Clearly,
this is the maximum amount of flow we may put through the given
path. The implementation is rather straightforward.

function flow=getPathMaxFlow(path, capacity)
 flow=%inf;
 from=path(1);
 for i=2:length(path)
 to=path(i);
 if(capacity(from, to)<flow) then
 flow=capacity(from, to);
 end;
 from=to;
 end
endfunction

function reducedCapacity =..
 getReducedCapacity(path, flow, capacity)
 reducedCapacity=capacity;
 from=path(1);
 for i=2:length(path)
 to=path(i);
 reducedCapacity(from, to) = ..
 capacity(from, to)-flow;

- 81 -

 reducedCapacity(to, from)=reducedCapacity(from, to);
 from=to;
 end
endfunction

Figure 20.1. The Support Functions.

The next function updates the capacities of the arcs along a given
augmenting path. The function getReducedCapacity() takes the
vector “path”, the “flow” by which the capacity matrix is to be
modified, and the capacity matrix. It simply reduces the capacities
of the arcs along the given path by the amount “flow”.

2. The Main Program
The main program is given below. It consists of a loop that identifies
an augmenting path, finds the maximum flow through that path, and
updates the capacity matrix to reduce the capacities of the arcs
along the augmenting path by the amount of flow. The loop runs
until no further path from the origin to the destination is found.

// --- main loop ---
maxFlow=0;
found=1;
while(found)
 visited=[origin];
 unvisited=[];
 for i=1:N
 if(i<>origin) then
 unvisited=[unvisited,i];
 end
 end

 path=getPath(visited, unvisited,..
 capacity, destination);
 found=(path($)==destination);
 if(found) then
 flow=getPathFlow(path, capacity);
 maxFlow=maxFlow+flow;
 capacity=getReducedCapacity(path,..
 flow, capacity);
 end
end

- 82 -

disp("Max flow:")
disp(maxFlow);

Figure 21.1. The Main Program.

The flow along the augmenting paths are cumulatively added to the
value maxFlow, which is displayed at the end.

3. Exercises
1. Modify the main loop to display each augmenting path and its

maximum flow.

2. Is it always possible to increase the maximum flow through a
network by increasing the capacity of just one arc? Experiment
and explain your findings.

- 83 -

XXI. LINEAR PROGRAMMING
Linear Programming is perhaps the best known modeling tool in
optimization. Since its inception in the mid 50s, Linear Programming,
or LP as it has come to be known, was responsible for much of the
CPU time of the mainframes. The main concepts are easily
demonstrated by an example.

Suppose we want to make two different types of cookies. The main
ingredients in both types is essentially the same, albeit at different
proportions. The following table shows how much of each ingredient,
by weight, comprises each type of cookie.

Cookie 1 Cookie 2 Price Available

Sugar 3 kg 5 kg 2 TL/kg 260 kg

Butter 4 kg 3 kg 8 TL/kg 200 kg

The table also gives the cost of each ingredient and the available
amounts on hand. Cookie 1 sells for 118TL per batch, and Cookie 2,
for 106 TL per batch. How many batches of each type of cookie
should the bakery make in order to maximize its profit?

1. The LP Model
We formulate the problem as an LP model. The following decision
variables are defined.

X1: Number of batches of Cookie Type 1 to be baked

X2: Number of batches of Cookie Type 2 to be baked

X1 and X2 are called the decision variables of the LP. The objective is
to maximize profit. The revenue is simply,

R=118*X1 + 106*X2.

The cost of the ingredients is computed as follows.

C=2*(3*X1+5*X2) +8*(4*X1+3*X2).

The objective is to maximize the profit (Z). Specifically,

Z=R-C=(118-6-32)*X1 + (106-10-24)*X2.

Simplifying the objective function, and desiring to maximize it, we
write,

max Z=80*X1 + 72*X2

There are two constraints, namely the availability of the two

- 85 -

ingredients.

3*X1+5*X2 <= 260

4*X1+3*X2 <= 200

Each of the constraints above is associated with an ingredient. The
first constraint, for instance, is related to the available sugar (260
kg). The left hand side of the inequality is the amount of sugar to be
used, if we produce X1 and X2 batches of the types. The amount of
sugar used cannot exceed the available amount on hand. The
remaining constraint is for butter.

In addition, we write two non-negativity constraints.

X1 >= 0

X2 >= 0

These two constraints are needed to prevent the number of batches
to be baked from assuming negative values.

2. A Naive Approach
A good engineer who has never seen an LP formulation may first
consider a brute-force approach. Considering the available sugar, we
have enough to produce 260/3 (fewer than 90) batches of Cookie 1,
and 260/5 (fewer than 60) batches of Cookie 2. Similarly, the
available butter limits us to 50 batches of Cookie 1 and fewer than
70 batches of Cookie 2. So, a most naïve approach would be to try
all combinations of (X1, X2) for X1 and X2 in the range [0, 100]. For
each combination, we would first check if the combination is feasible.
That is, if the specified number of batches can be baked with the
available ingredients. If feasible, we would compute the objective
function value. Then, among all feasible solutions, we would pick the
one with the highest objective function value.

The code is shown below.

function result=feasible(a, b)
 result=0;
 if a < 0 then return; end
 if b < 0 then return; end
 if 3*a+5*b > 260 then return; end
 if 4*a+3*b > 200 then return; end
 result=1;
endfunction

function result=objective(a, b)

- 86 -

 result=80*a+72*b;
endfunction

Z_grid=meshgrid(0:100,0:100);
best_X1=0;
best_X2=0;
best_Z=0;
for X1=0:100
 for X2=0:100
 if ~feasible(X1, X2) then continue; end;
 Z=objective(X1,X2);
 if Z>best_Z then
 best_Z=Z;
 best_X1=X1;
 best_X2=X2;
 end
 Z_mesh(X1+1,X2+1)=Z;
 end
end

printf("X1:%d X2:%d Z:%d\n",..
 best_X1, best_X2, best_Z);

mesh(Z_mesh);

Figure 21.1. The Code

Following the practice of structuring our code with the use of
functions, we separate the feasibility check and the computation of
the objective function value. These two are implemented as
individual functions. This structure also makes the code somewhat
easier to modify in the future. The main loop simply iterates X1 and
X2. First we check the feasibility of the (X1, X2) combination. If
feasible, we compute the objective function value. The best
objective function value as well as the X1 and X2 that give this
objective function value are kept. The code prints the best solution
upon termination.

X1:20 X2:40 Z:4480

Figure 21.2. The Output

The solution indicates that we must produce 20 batches of Cookie 1
and 40 batches of Cookie 2. This combination yields the highest
profit, 4480 TL.

- 87 -

The graph shows how the objective function behaves over the
feasible solution space.

Figure 21.3. The Objective Function Value over the Solution Space.

3. A Smarter Approach
As discussed, a good engineer is expected to solve the problem,
albeit in a naïve brute-force manner. This is a good illustration for
the motivation for this book: develop computational skills to solve
practical problems and gain further insights. There are insights we
could develop from this exercise. In any case, LP will be covered in
some depth in almost all industrial engineering curricula. It is seen
that if there is a solution, it should occur on the boundary of the
feasible solution space. Armed with this information, instead of
checking all combinations of the decision variables, we could limit
our checks to the extreme points. The extreme points are where the
inequalities hold tightly. We have four inequalities and two unknown
decision variables.

3*X1+5*X2 <= 260

4*X1+3*X2 <= 200

X1 >= 0

X2 >= 0

When we force the inequalities to hold tightly, we have an equation
rather than an inequality. Any two equations of the four would
uniquely determine the values of the decision variables X1 and X2.

- 88 -

For example, the two inequalities

4*X1+3*X2 <= 200

X1 >= 0

become

4*X1+3*X2 = 200

X1 = 0

which yield the solution X1=0 and X2=200/3=66.67. There are a
total of four-choose-two or six different ways we can solve for the
decision variables. Each one of these solutions would be at an
extreme point. In matrix form, we have an overdetermined set of
linear equations.

[
3 5
4 3
1 0
0 1

] [X1
X2]=[

260
200
0
0

]
The coefficient matrix is a 4-by-2 matrix. The right-hand-side vector
is of size 4. We can solve for the decision variables by considering
any two rows of the coefficient matrix, and the corresponding
elements in the right-hand-side vector.

However, not all extreme points need to be feasible. We still must do
a feasibility check for potential solutions. The following code
illustrates the approach. We define the coefficient matrix (c) and the
right-hand-side vector (rhs). Two nested loops pick out rows of the
coefficient matrix and place them in matrix B. Similarly, the
corresponding elements of the right-hand-side vector are placed in
vector R. The reduced system of linear equations thus has two
equations in two unknowns.

clc
clear

c=[3, 5; 4, 3; 1, 0; 0,1];
rhs=[260, 200, 0, 0];

function result=feasible(a, b)
 result=0;
 if a < 0 then return; end
 if b < 0 then return; end
 if 3*a+5*b > 260 then return; end

- 89 -

 if 4*a+3*b > 200 then return; end
 result=1;
endfunction

function result=objective(a, b)
 result=80*a+72*b;
endfunction

N=size(rhs,'c');

best_X1=0;
best_X2=0;
best_Z=0;

for i=1:N-1
 for j=i+1:N
 B(1,:)=c(i,:);
 B(2,:)=c(j,:);
 R(1)=rhs(i);
 R(2)=rhs(j);
 // solve the set of linear equations
 X=(B^-1)*R;
 disp(X);
 if ~feasible(X(1),X(2) then continue; end
 Z=objective(X1,X2);
 if Z>best_Z then
 best_Z=Z;
 best_X1=X1;
 best_X2=X2;
 end
 end
end

printf("X1:%d X2:%d Z:%d\n",..
 best_X1, best_X2, best_Z);

Figure 21.4. Scanning the Extreme Points.

The solution is obtained by inverting the matrix B and multiplying
with the (reduced) right-hand-side vector. This is not the best
approach when the size of the matrix is large, but in this case with
only two unknowns, it can be justified for its simplicity. Each solution
is checked for feasibility, and the main loop keeps track of the best
solution, as done in the previous approach.

The approach gives the same solution X1=20 X2=40 Z=4480.

- 90 -

4. Exercises
1. If we had one more kg of sugar, how much more profit could we

have made? This is called the marginal cost of sugar. We would
be willing to pay up to this much for a kg of sugar, since we would
still be making a profit, but not more than that. Repeat the
exercise for butter.

2. How much must the price of a batch of Cookie 1 be changed for
the the solution (20 batches of Cookie 1 and 40 batches of Cookie
2) not to be the optimum? Give a range for the price of a batch of
Cookie 1 and another range for Cookie 2. Such studies are called
sensitivity analysis. It reveals how sensitive the solution is to the
model parameters.

3. The code given for the second approach works with two nested
loops, one for each row of the coefficient matrix of the reduced set
of equations. How would you generalize the code for the cases
where the number of decision variables may vary?

- 91 -

XXII. CONSTRAINED NONLINEAR PROGRAMMING
Nonlinear programming deals with finding the values of the decision
variables at which a nonlinear objective function attains its maximum
or minimum. Sometimes there are constraints which limit the
feasible region of the space spanned by the decision variables. We
have seen such a case while discussing locating an airport among a
set of cities so as to minimize the total length of roadways to be
constructed. Here, we add a constraint to the location problem.

Consider four cities with coordinates (xi, yi) for i=1, 2, 3, 4 located
within a square region. Let the city coordinates xi, yi be in the range
[1, 100]. Let there be a river that diagonally passes through the
region. The river is on the line y=100-x. Similar to the airport
location problem, we want to build a port on the river while
minimizing the total length of the roadways to each of the cities.

1. The Code
The code consists of a function subroutine and a loop. The function
is the same as the one we used for the airport location problem. It
simply computes the total distance from a given point to all four
cities.

The main loop iterates through the X coordinate, from 1 to 100. At
each iteration, we find the Y coordinate, and then call the function to
compute the total road length needed if the port is to be laced at this
location. The loop also keeps track of the best total road length so
far. When the loop terminates, we have the coordinates of the best
location.

clc
clear

// Four planar points, coordinates in the
// range of [1, 100]
city_x=[10, 80, 35, 36];
city_y=[42, 9, 91, 19];
// numerically find a point to place a new
// port on the river (y=100-x), such that
// the total distance from the cities to
// the port is minimized.

// f(a,b) gives the total distance from
// points (city_x, city_y) to (a,b)
function [d]=f(a, b)
 d=0;

- 93 -

 for i=1:4
 d=d+sqrt((a-city_x(i))^2+(b-city_y(i))^2);
 end
endfunction

bestZ=400;
bestX=0;
bestY=0;

for x=1:100
 y=100-x;
 Z(x)=f(x,y);
 if Z(x)<bestZ then
 bestX=x;
 bestY=y;
 bestZ=Z(x);
 end
end

plot(Z);
xtitle('X coordinate');
xlabel('km');
ylabel('total road length (km)');

printf("best lcation: (%d,%d)\n", bestX, 100-bestX);
printf("min length : %d\n", bestZ);

Figure 22.1. Seeking the Best Port Location.

The code prints out the best location for the port and the
corresponding total road length.

best location: (48,52)
min length : 169

Figure 22.2. Code Output.

The code plots t

he total road length as a function of the X coordinate. It is observed
that the objective function value is somewhat sensitive to the
location. Thus, searching for the best location seems to be worth the
effort.

- 94 -

Figure 22.3. Total Road Length (objective function value) as a
Function of the X Coordinate of the Port.

2. Exercises
1. Note that the city coordinates we used are the same as the ones

we used for the airport location problem. The airport could be
built anywhere in the region, while the river port must be on the
river. That is, the airport optimization was unconstrained, while
the river port location is constrained to be on the river. Compare
the two solutions.

2. Add a few more lines to the code to plot the river and the cities.
Also show where the location of the port which minimizes the total
road length, as shown below.

- 95 -

 Figure 22.4. Cities (blue crosses), the River (green line),
and the Port Location (red circle).

3. Suppose we have certain regions of the river which are deemed
inconvenient for the port, say due to soil conditions or river width.
These will introduce further constrains on the problem. How would
you handle such additional constrains?

4. The constraint we used is a linear constrain. That is, the port
location being limited to coordinates where y=100-x is a linear
one. How would you handle nonlinear constrains? For example,
consider the case x2+y2<802?

- 96 -

XXIII. MONTE CARLO ANALYSIS
Sometimes it becomes difficult to compute a given phenomenon, for
the lack of a conceptual attack on the problem. It is often the case
that we try to build as much insight as possible in search of a greater
understanding. These initial trials are therefore quite important. A
good engineer should possess the skills to quickly generate
computational cases and glean insights from them.

In certain fortunate cases, an initial solution may present itself
through analysis involving randomness. A classical textbook
example is in computing the numerical value of π. It is known that
the area of a disk with a radius of r is πr2. Consider a unit square
encapsulating a quarter of a disc as shown below.

Figure 23.1. Computing the Value of π.

Here, we have a quarter disc inscribed within a unit square. If we
generate random points in the unit square, it is rather
straightforward to test if the random point is also within the disk. Let
the point (x,y) be randomly generated. That is, we generate a
random x in the interval [0, 1], and similarly a y in the same range.
We make sure that x and y are statistically independent. Then, the
point (x,y) will be inside the disc if

x2
+ y2

≤1 .

- 97 -

The fraction of the points within the disc approximates the fraction of
the area of the unit square covered by the disk. Then, 4 times the
fraction will approximate the area of the disc. Since the radius of the
disc is 1, then, 4 time the fraction will also serve as an approximation
to π.

1. The Code
The code given below is rather uncomplicated. In a sense, this is the
beauty of the Monte Carlo method. It provides an uncluttered attack
on the problem at hand.

clc
clear

RunLength=100000;
Count=0;

for i=1:RunLength
 x=rand();
 y=rand();
 if(x^2+y^2<=1) then Count=Count+1; end
end

disp(4*Count/RunLength);

Figure 23.2. The Code.

As expected, the output gives values close to π. One may increase
the run length to seek better approximations.

2. Exercises
1. Change the run length and observe its effect on the quality of the

approximation. Try run lengths of 100, 1,000, 10,000, 100,000,
and 1,000,000. For each case, make 10 runs and compute the
average. Plot these results to show the effect of the run length on
the accuracy of the approximation.

2. Use the Monte Carlo method to compute the integral of Sin(x) for
the interval [0, π]. That is, generate random points in the
rectangle (0,0) to (π, 1). Then find the fraction of points under the
curve Sin(x).

- 98 -

3. What is the expected distance between two random points in a
unit square? What about in a unit equilateral triangle ot a unit
circle?

- 99 -

XXIV. STATISTICAL FORECASTING
Statistical forecasting tries to estimate future values of a time series
from information extracted from the past values. It differs from other
forecasting methods, such as the so-called Delphi Method, as it relies
on a statistical evaluation and modeling of the time series.

As an example, consider the rather fortunate company, the demand
for whose product seems to display a constant upward trend. The
monthly demand in tons is plotted over the past 30 months.

Figure 24.1. Monthly Demand in Tons.

The question on hand is “What will demand be for the next month?”
We present two rather elementary techniques often used in industrial
engineering.

1. Moving Averages
The Moving Averages (MA) method simply takes the average of a
window of past values. If the window width is 10, for example, we
average the most recent 10 values and use this average as the
estimate for the next value in the time series. The wider the window,
the less sensitive it is to noise. This is because, any noise
superimposed on the time series will tend to cancel out in the long

- 101 -

run. However, as the window widens, so does the estimate become
less agile. That is, it takes a longer time to catch up with any sudden
changes in the time series.

clc
clear
d=[9.68 12.99 15.14 10.32 15.86..
 12.75 18.98 17.26 21.15 20.32..
 21.76 22.94 24.38 24.88 24.99..
 23.86 22.22 29.56 29.90 32.11..
 34.84 32.85 30.18 38.36 38.37..
 38.48 39.20 39.13 42.95 43.75];

w=3;

function e=MovingAverage(s, n, k)
 count=min(n, k);
 e=0;
 for i=1:count
 e=e+s(n-i);
 end
 e=e/count;
endfunction

// moving average with window w
my=[];
mx=[];

for j=w+1:size(d,2)
 mx($+1)=j;
 my($+1)=MovingAverage(d, j, w);
end

plot(d')
xtitle('Monthly Demand');
xlabel('month');
ylabel('tons');

plot(mx, my, 'r')
legend(['demand (tons)'..
 'moving average (3) forecast']);

Figure 24.2. The Code for Moving Averages.

The code centers around the function MovingAverage(s, n, k), which
computes the moving average forecast from the series s, using up to
its first n terms. The last parameter k is the width of the moving

- 102 -

average. The number of trailing elements to average is named
“count” which is the minimum of k and n. The function simply
accumulates the series elements in e, and then divides the sum in e
by count.

The main loop computes the moving average estimates, from w+1 to
the end of the data series, where w is the width parameter of the
moving average. The estimates and the corresponding month values
(indices) are stored in matrices my and mx, respectively. This way,
as we plot (mx,my), the graph starts from the first value in mx, not
from the origin. The code plots (mx,my) in red, also marking the
data points with small circles (the letter 'o'). The resultant output
plot is given below.

Figure 24.3. Moving Average Estimates (Window w=3).

Note that the estimate usually lags the data, since past data points
are averaged. Since there is a general increasing trend, past points
usually have a lower value than the next data point.

2. Exponential Smoothing
Another quite popular forecasting method is the Exponential
Smoothing (ES) method. Here, the forecast for the next data point is
estimated as a weighted sum of the last data point and the last
estimate.

- 103 -

^dn+1=αdn+(1−α) d̂n

The circumflexes (the hats above the d's) indicate that they are
estimates. The series {dn} is observed up to period n. The next
estimate blends the last observation and the most recent estimate
with parameter α, chosen between 0 and 1. The larger the α, the
more emphasis on the most recent data point. Likewise, the smaller
the α, the more emphasis on the most recent estimate. Thus, as α is
increased, the estimate becomes more sensitive to the data. It also
becomes more affected by any noise in the data. Contrarily, as α is
decreased, the estimate becomes less sensitive to noise.

We next present the code that implements ES on the same data set.

clc
clear

d=[9.68 12.99 15.14 10.32 15.86..
 12.75 18.98 17.26 21.15 20.32..
 21.76 22.94 24.38 24.88 24.99..
 23.86 22.22 29.56 29.90 32.11..
 34.84 32.85 30.18 38.36 38.37..
 38.48 39.20 39.13 42.95 43.75];

alpha=0.5;

function e=ExponentialSmoothing(s, n, a)
 e=s(1);
 for i=2:n
 e=a*s(i)+(1-a)*e;
 end
endfunction

// exponential smoothing
ey=[];
ex=[];
for j=2:size(d,2)
 ex($+1)=j;
 ey($+1)=ExponentialSmoothing(d, j, alpha);
end

plot(d')
xtitle('Monthly Demand');
xlabel('month');
ylabel('tons');
legend(['demand (tons)']);

- 104 -

plot(ex, ey, 'ro-')
legend(['demand (tons)' 'exponential smoothing(0.5)
forecast']);

Figure 24.4. The Code for Exponential Smoothing.

The code is almost the same as the one given for MA. Once again,
we use a function to compute the next estimate. Here
ExponentialSmoothing(s, n, a) computes the next estimate given the
series s, up to its n-th element. The estimate is thus for the (n+1)-st
element of the series s. The last parameter a is the weight (alpha).
The output plot shows the original time series and the ES estimates,
plotted in red with small circles indicating the data points.

Figure 24.5. Exponential Smoothing Estimates (weight α=0.5).

3. Exercises
1. Find suitable data and run both forecasting methods. For

example, you may use daily average temperatures or the travel
time to go to school as your data set.

2. Change the MA and ES parameters in the given programs and
observe their effects.

- 105 -

3. Both MA and ES are popular forecasting methods. What are the
contrary advantages and disadvantages of the two forecasting
methods? What are common advantages and the common
disadvantages?

4. Try both methods on data that show seasonality. For example,
beach attendance or ice cream sales are higher in the summer
months. Is either method better in detecting seasonality?

- 106 -

XXV. WORKING WITH NOISY DATA
Measurement is an essential part of engineering. Accordingly,
almost all engineering tasks require some form of data collection and
processing. Measurements more often than not come with
embedded noise. Data from human systems usually come with an
added level of uncertainty. Suppose, for example, we observe
successive arrivals to a supermarket checkout counter. The typical
way to model the arrival stream is by treating the inter-arrival times
as random variables. If we further assume that inter-arrival times are
independently and identically distributed, then we need specify only
one distribution function. Suppose we measure the inter-arrival
times of 1000 successive customers and obtained the following
histogram.

Figure 25.1. Histogram of Inter-arrival Times.

Moreover, let the average of the 1000 inter-arrival times be 10.03,
and standard deviation 98.50.

1. Representing Data
As depicted above, drawing a histogram is a good initial step towards
representing and understanding the properties of the random
variable. A histogram may suggest the a suitable distribution to be
used to model the random variable. Further, if we compute a few
statistics, such as the average and the standard deviation, we may
also start assigning distribution parameters.

For the data shown in the histogram in Figure 25.1, we compute a
coefficient of variation=0.99. From the average and coefficient of
variation, along with the general shape of the histogram, we may

- 107 -

justifiably assume that the inter-arrival times are exponentially
distributed with rate 1/10, that is, the reciprocal of the average.

2. Drawing Histograms
If need be, you may write a short function to draw the histogram.
However, since histograms are frequently used, most engineering
computation software has built-in functions to draw histograms. In
this example, we will use the Scilab function histplot(). In its most
elementary use,the function takes two parameters, the number of
classes (n) and a vector of values (y), as histplot(n, y). The number
of classes determines how many intervals are to be used. The
documentation reveals that the default behavior of histplot()
normalizes the frequencies (number of occurrences) of each interval.
If you want to display the count, that is, the number of occurrences
within that interval, then a third parameter is needed, as histplot(n,
y, normalization=%f).

The following example illustrates the use of the function.

clc
clear
// RNG exponential distribution

fLambda=0.10;
nTrials=1000;
nClasses=10;

for n=1:nTrials
 y(n) = grand(1, 1, "exp", 1.0/fLambda);
end

 clf(1);
 scf(1);
 histplot(nClasses, y);
 xtitle('histogram of inter-arrival times');
 xlabel('inter-arrival time');
 ylabel('frequency');

Figure 25.2. Drawing Histograms.

The code uses the Scilab function grand() to generate exponentially
distributed random variables and save them in the vector y. The
function histplot() is called to draw the histogram.

The data and the histogram given in the previous section was
actually generated by a similar program.

- 108 -

3. Exercises
1. Modify the code to generate uniformly distributed random

variables and draw their histogram.

2. Modify the code to generate normally distributed random variables
and draw their histogram.

3. Generate random variables with positive and negative skewness
and observe differences in their histograms.

- 109 -

XXVI. THE LAW OF LARGE NUMBERS
In layman's terms, the law of large numbers simply states that the
computed average of a sample drawn from a given distribution will
converge to the distribution mean as the population size increases.
This is an important theoretical point. It guarantees that the sample
average is an unbiased estimate for the distribution mean.

We now attempt to check this assessment by computing sample
averages and observing if they indeed converge to the distribution
mean. Interestingly, here we use computation in a qualitatively
different way. We use computation to verify a theoretical point.
Many times, when understanding an engineering phenomena, before
we make claims and try to justify them, we rely on numerical cases
to develop our understanding, to gain insights, and to hone our
instincts.

1. The Code
Consider the following code that uses the Scilab function grand() to
generate exponentially distributed random variables. The
distribution parameter fLambda is set to 0.50, which means that the
expected value of the generated random variables will be
1/0.50=2.0.

The code generates nTrials number of random variables. The sum of
the successive random variables are stored in the vector fSums.
Similarly, the sample averages are stored in fAverages. The code
plots fAverages, which, if the law of large numbers holds, should
converge to the mean (2.00).

clc
clear
// law of large numbers

fLambda=0.50;
nTrials=10000;
fSums(1) = grand(1, 1, "exp", fLambda);
fAverages(1)=fSums(1);

for n=2:nTrials
 fExpRN = grand(1, 1, "exp", 1.0/fLambda);
 fSums(n) = fSums(n-1)+fExpRN;
 fAverages(n)=fSums(n)/n;
end

 scf(1);

- 111 -

 plot(fAverages);
 xtitle('Averages (Exp RNG using grand())');
 xlabel('trials');
 ylabel('sample average');

Figure 26.1. The Code.

The code output is a graph showing how sample averages change as
a new random variable is added to the sample.

Figure 26.2. The Output.

As expected, the sample average converges toward the mean (2.00).
Interestingly, the convergence rate is somewhat slow. Although the
sample average is practically within 10 percent, it does not quite
settle until the sample size if a few thousand. Such observations
provide important engineering insights.

2. Exercises
1. Modify the code to generate normally distributed random variables

with mean 10. Try coefficients of variation of 0.5, 1.0, and 2.0.
Observe the convergence rate in each case. How does the
coefficient of variation affect the rate at which the sample average
converges to the mean?

2. Repeat the experiments with uniformly distributed random
variables.

- 112 -

XXVII. THE CENTRAL LIMIT THEOREM
The central limit theorem is perhaps the cornerstone of statistics. It
goes a long way towards explaining why the normal distribution
plays such a central role in statistics. In a nutshell, the central limit
theorem asserts that the distributions of sample averages converge
towards the normal distribution. That is, consider a sample of
random variables drawn from any distribution. Suppose we compute
the sample average. Then, suppose we repeat this process of
drawing a sample and computing its average. The series of
averages, themselves, may be regarded as random variables.
Moreover, if the sample sizes are the same, these averages will have
the same distribution. The central limit theory says that the
distribution of these averages will approach the normal distribution.

1. The Code
Once again, we use computation to test the validity of the central
limit theorem. This test, of course, is not meant to be proof. Rather,
the test is to provide numerical insights and hone our engineering
instincts.

clc
clear

// central limit theorem

fLambda=0.50;
nSampleSize=100;
nTrials=1000;
nClasses=30;

for n=1:nTrials
 fSum=0;
 for k=1:nSampleSize
 fExpRN = grand(1, 1, "exp", 1.0/fLambda);
 fSum = fSum+fExpRN;
 end

 fAverages(n)=fSum/nSampleSize;
end

 scf(1);
 histplot(nClasses, fAverages);

- 113 -

 xtitle('central limit theorem');
 xlabel('averages');
 ylabel('frequency');

Figure 27.1. The Code.

As seen, the code generates samples of size 'nSampleSize' from an
exponentially distributed random variable with rate
'fLambda'. The sample averages are computed and store in
the vector 'fAverages'. The experiment is repeated for
'nTrials' number of samples. These parameters are defined
in the beginning, so that the code may be easily modified.
The code then draws a histogram of the averages. We
observe if the histogram resembles one that came from a
normally distributed random variable.

Figure 27.2. The Histogram of Averages of Exponentially Distributed
Random Variables.

The histogram uses 30 classes (intervals). The exponential
distribution has a mean of 2.0, since its rate os 0.50. Note that the
averages are clustered around the mean (2.0). The histogram looks
like a normal distribution.

- 114 -

2. Exercises
1. Predict the effects of changing the code parameters. Namely,

what is the expected effect of changing the distribution rate, the
sample size, or the number of trials?

2. Modify the code by altering the code parameters, as investigated
in Exercise 1. How well did the output match your predictions of
Exercise 1?

3. Modify the code to generate samples of uniformly distributed
random variables. Repeat Exercise 1 and 2 with uniformly
distributed random variables.

4. (Difficult)

Part 1.

In this chapter, we generated samples of exponentially
distributed random variables, say X. Let the rate of the
exponential distribution be 'r', and the sample size be 'N'. Let
the sample averages be denoted as the random variable A.
What are the mean and variance of the distribution of the
averages, A? Note that the mean of A is a function of the rate
r, irrespective of the sample size N. However, the variance of
A is also a function of N.

Part 2.

Generate normally distributed random variables with the mean
and variance equal to those of A as obtained in Part 1. Plot the
histogram of these normally distributed random variables.
How much does this histogram resemble the one in Figure
27.2? What are your observations and conclusions?

- 115 -

XXVIII. CURVE FITTING (SIMPLE AND MULTIPLE REGRESSION)
We all have seen a line fit through noisy data, such as depicted
below. Here, the class attendance of students and their final class
grade are plotted.

Figure 28.1. Relationship Between Class Attendance and Grade.

The plot offers evidence that the more you come to class, the better
your grade will be. There is an implied model of a cause-effect
relationship. The grade is the outcome, or the effect. The
attendance rate is the cause that determines the effect. Regarding
this cause-effect model, the attendance is the independent variable,
that is, the variable one may vary. The grade is the dependent
variable, that is, the effect of our attendance rate. In other words,
once the attendance is set, the outcome (grade) follows.

The line that is fit through the data points is thus considered a model
of this cause-effect relationship. The model is a quantitative one –
and engineers like quantitative, or numerical, models. The model
suggests that there is a linear relationship between the cause and
the effect. In fact, one may write this as a algebraic function. Let
attendance be denoted by X and the grade by Y. The model may
then be expressed as

- 117 -

Y=b0 + b1*X

where b0 is the intercept of the line, and b1 is the slope. We call this
a linear regression model, since the independent variables are
combined in a linear fashion (multiplied by constants and added).
Moreover, the model above is a so-called “simple” linear regression,
since it has only one independent variable. It is also possible to have
multiple independent variables, with a corresponding model, such as

Y=b0*X0 + b1*X1 + b2*X2 + b3*X3 + b4*X4 ...+ bk*Xk.

The above model is still linear in the independent variables (the X i)
but there are more than one independent variable. Such models are
called multiple linear regression models.

You may have noticed that the above model has no explicit constant
term. The constant term may simply be implemented by selecting all
X0 terms as 1.

1. The Least-Squares Method
Once the model parameters, that is, the coefficients bi, are
determined, the linear regression model gives a concise formula that
numerically relates the size of the effect to the size of the causes.
The “least squares method” provides an efficient technique to
determine the model parameters. Moreover, the method may be
summarize in matrix form rather elegantly. We place the dependent
variables in a column vector Y, as given below.

Y=[
59.66
63.90
66.58
68.81
71.97
74.48
76.65
88.08
93.83
98.18

]
The corresponding independent variables are placed in a matrix as,

- 118 -

X=[
1 44
1 51
1 55
1 62
1 64
1 71
1 76
1 83
1 86
1 94

]
Note that the first column of the matrix X is all 1s. This follows the
modeling convention

Y=b0*X0 + b1*X1

so that b0 is the constant term of the model. The least squares
method gives the parameters bi as the vector

B=((X'*X)^-1)*X'*Y;

B=[
b0

b1

⋮
bk

]=(XT X)
−1 XT Y

The method requires the inversion of a k-by-k matrix, where k is the
number of model parameters. In case of simple linear regression,
this is a two-by-two matrix.

2. The Code
The following code computes the model parameters for the
attendance-grade relationship discussed in the beginning of the
chapter. The data points and the fit is then plotted.

clc
clear

X=[
1 44;
1 51;
1 55;

- 119 -

1 62;
1 64;
1 71;
1 76;
1 83;
1 86;
1 94;
];

Y=[
59.66
63.90
66.58
68.81
71.97
74.48
76.65
88.08
93.83
98.18
];

B=((X'*X)^-1)*X'*Y;

disp(B)

FIT=[];
for i=1:size(Y,1)
 FIT(i)=B(1)+X(i,2)*B(2);
end

scf(0) // create figure 0
clf(0) // clear figure 0
plot(X(:,2),Y,'bo')
plot(X(:,2),FIT,'r')
xtitle('attendance-grade relationship');
xlabel('class attendance (percent)');
ylabel('class grade (out of 100)');

Figure 28.2. The Code.

The code outputs the model parameters (i.e., the coefficients) as,

22.675913

0.7804386

Thus, we may now declare the quantitative cause-effect relationship

- 120 -

of attendance and grades as

grade = 0.78*attendance + 23

You may noticed that we truncated the coefficients to two significant
digits. Given the sample size and various external factors, we are
cognizant that our model is an approximation at best. Thus, two
significant digits are probably sufficient. It would be meaningless to
give these coefficients in 7 or 8 significant digits. We may even
simplify our findings as

grade = 0.8*attendance + 20

which would most probably be sufficient as well as easy to
remember.

Also note that the model is a descriptive one. It allows one to predict
the outcome given the inputs based on a statistical study of similar
cases. It does not provide an explanation for the cause-effect
relationship. In this sense, the regression model is by no means an
end product, but a component of a general view of a cause-effect
relationship. After all, you may collect irrelevant data and still fit a
curve through the data points.

As a final note, let us be reminded that not all fits are equally
accurate. How well the fit describes the data is the topic of
regression analysis. Here, by eyeballing the graph, we may be
convinced that the fit is good enough to describe the data, since
almost all points, although not exactly on the line, are nonetheless
quite close to the fitted line.

3. Exercises
1. Collect data from your classmates on the distance and travel time

from home to school. Fit a line through the data that gives the
travel time based on the distance. Plot the data points and the fit.
Discuss how well the model explains the data.

2. Consider throwing a ball into the air and measuring how high it
went, along with how long it took to land back on the ground. Let
H and T be the height and the time. You will notice that a
relationship between H and T is best given by a quadratic model,
since the ball decelerates on its way up, and then accelerates
falling back down. Consider the modeling

H=b0*T0 + b1*T1 + b2*T2

where T0 terms are 1s, T1 terms are the elapsed time, and the T2
terms are the squared times (squares of the T1 terms). Collect
data (or use the data given below) and estimate the model

- 121 -

parameters. How are the model parameters related to the
gravitational acceleration?

Trial Time Height

1 1.05 2.78

2 1.58 6.23

3 2.09 10.92

4 2.57 16.55

5 3.14 24.67

- 122 -

XXIX. SIMULATING A SIMPLE QUEUE
The simplest queueing system is typified by customers randomly
arriving at a server. If the times between successive arrivals and the
service times are exponentially distributed, this system is referred to
as an M/M/1 queue. Here the letter 'M' refers to the memoryless
property of the exponential distribution. The two Ms indicate that the
arrival and the service processes are exponential, while the trailing
'1' indicates that the system contains only one server.

Imagine a single check out line at a small store with a cashier.
Customers come and the cashier checks out the customers. The
times between customers joining the line is assumed to be
exponentially distributed. So is the service times, that is, the time it
takes the cashier to check out each customer, exponentially
distributed. Of course, these two distributions may have different
rates.

The memoryless property of the exponential distribution is quite
interesting. When the inter-arrival times are exponentially
distributed, this simply means that the expected remaining time to
an arrival is independent of the time we have already waited for an
arrival. Thus, the process has no memory of how long we have
waited so far for the next arrival. The discrete counterpart is the
geometric distribution. Say, you toss a die until you get a '1'. The
expected number of tosses until the '1' arrives is 6, since the
probability of tossing the '1' is 1/6. Now, suppose that you have
already tossed the die 3 times and that the '1' has not “arrived”. The
expected number of times you need to toss the die until the '1'
occurs is still 6, independent of the 3 tosses so far. Thus, the process
has no memory of the 3 tosses already completed. The process is
memoryless.

There is a close relationship between the exponential distribution and
the geometric distribution. The latter may be considered as the
limiting continuous case of the former. Specifically, the probability of
an arrival in the next Δ t time units is λ Δ t where λ is the rate
of the exponential distribution. This property may be viewed as the
discretization of the continuous distribution. We will use this
property to simulate the M/M/1 queue.

The preceding sentence used the word “simulation”. A simulation is
like a video game. You model a dynamical system by a set of states
and actions, and then let the computer numerically go through the
steps that correspond to the evolution of the system over time.
Meanwhile, the code keeps track of performance measures. Here we

- 123 -

will record how much the server is idle and the number of customers
in the system as indicators of the system performance.

1. A Specific Queue
Consider an M/M/1 queue with an arrival rate of rArrive=10
customers per hour and a service rate of rService=20 customers per
hour. Let us select our Δ t to be hDeltaTime=0.001 hour. Then,
the probability of an arrival in the next Δ t is

pArrival=hDeltaTime*rArrive.

Similarly we define,

pService=hDeltaTime*rService.

Defining the parameters explicitly in the beginning of the code is
good software practice. This way, you can change the system
parameters easily and repeat the runs. If the code is well organized,
you can change the parameter settings at one well-defined line in
the code.

The run time and the number of periods (of duration Δ t) are
likewise defined. The code runs the clock from 0 to the specified run
time in Δ t time steps, called periods. This approach amounts to a
continuous-time simulation of the system. As the simulation
progresses, the code keeps track of the number of customers in the
system and the number of periods the server is idle.

clc
clear

rArrive =10; // rate: arrival per hour
rService=20; // rate: service completion
hDeltaTime=0.001; // hour
pArrive=hDeltaTime*rArrive; // prob arrival
pService=hDeltaTime*rService; // prob service

nRunTime=100; // hours
nNumPeriods=nRunTime/hDeltaTime;

nCustomers=0; // number of customers in the system
nEmptyPeriods=0;
nCustomerPeriods=0;

for time=1:nNumPeriods
 if((nCustomers>0) & (rand()<pService))
 then

- 124 -

 nCustomers=nCustomers-1;
 end

 if(rand()<pArrive)
 then
 nCustomers=nCustomers+1;
 end

 if(nCustomers<1)
 then
 nEmptyPeriods=nEmptyPeriods+1;
 else
nCustomerPeriods=nCustomerPeriods+nCustomers;
 end
 end

 fAveCustomers=nCustomerPeriods/nNumPeriods;
 fUtilization=1.0-..
 (nEmptyPeriods/nNumPeriods);

printf(simulated performance measures\n");
printf("Utilization: %8.2f\n", fUtilization);
printf("Average number of customers:..
 %8.2f\n", fAveCustomers);

Figure 29.1. The Code.

Upon completion of all simulation iterations, the code computes and
prints the utilization, that is, the percent of time the server was busy,
as well as the average number of customers in the system.

The code output is shown below.

simulated performance measures
Utilization: 0.50
Average number of customers: 1.00

Figure 29.2. The Output.

As seen, the server of our M/M/1 queue is busy 50% of the time. This
mean that it is also idle half the time. This makes sense. Suppose
we have the expected 10 arrivals per hour. The server serves 20
customers per hour. This means it takes the server an expected 1/20
hours to serve each customer. Given the 10 arrivals, it would take a
total of 10/20, or half an hour to serve all arrivals in an hour. This

- 125 -

makes the utilization ½ or 50%. Of course, the number of arrivals in
an hour will vary from over time, but the argument is intuitive.

2. Exercises
1. The exponentially distributed inter-arrival times and service times

are obtained by considering a small Δ t of 0.001 hours. We
referred to this as a discretization. Just as an image is made up of
discrete pixels, the smaller the Δ t the finer the image. In our
case, we want Δ t to be small enough to give good results. That
is faithfully represent the continuous distributions. However, a
small Δ t also means more iterations and thus, longer processing
times. Experiment with different Δ t values to see when it
becomes so large that it fails to provide an acceptable
representation of the continuous distribution.

2. Change the arrival and service rates and run the simulation again.
Observe what happens when the arrival rate is greater than the
service rate. Discuss your findings.

3. The ratio of the arrival rate to the service rate is called the traffic
intensity. It is known that the utilization of an M/M/1 queue is the
same as the traffic intensity. Modify the code to compute the
traffic intensity and see how it varies from the simulated utilization
factor.

4. Theoretical work shows that the number of customers in an M/M/1

queue is
ρ

1−ρ
where ρ is the traffic intensity. Modify the code

to print out the theoretical value of the expected number of
customers in the system. Compare the theoretical values to the
simulation results.

5. We discretize a continuous time process by considering small time
steps of duration Δ t . We understand that the smaller the time
step, the more accurate our simulation will be. However, the
smaller the time step, the more the computations. In fact during
many time steps no system event occurs. That is, many time
steps are void of either an arrival or a departure. Modify the
program to display how many time steps witness a system event.
Let the number of time steps during the run in which there is a
system event be K. Let there be a total of N time steps during the
simulation run.

 1. Consider plotting the faction K/N as a function of the time step
size h. Guess the shape of this function.

- 126 -

 2. Plot the fraction K/N as a function of the time step size Δ t .
Did the graph turn out to be as you conjectured?

- 127 -

XXX. DISCRETE-EVENT SIMULATION
The preceding chapter developed a continuous-time simulation for
the M/M/1 queue. Time was discretized into small time steps (Δ t).
We understand that the smaller the Δ t , the more accurate our
simulation will be. However, the smaller the Δ t , the more
computations are needed. Realizing that only a few of the time steps
actually witness a system event, we can improve the efficiency of the
simulation by simply considering the system at times when an event
occurs, and disregarding the rest of the time steps. This approach is
called “discrete-event simulation”.

It should be noted that simulation and related software are rather
well developed subjects in industrial engineering. There are many
good simulation tools available to the industrial engineer. Simulating
a system using a general-purpose engineering computation tool such
as Octave or Scilab is not the best idea. We undertake such a task
here to illustrate the fundamental concepts in simulation, rather than
offer a practical approach.

The queueing system discussed in this chapter is a rather simple
construct, whose performance measures are readily obtained in
closed form. Almost all realistic industrial engineering systems are
so complicated that closed-form expressions are not available. One
may resort to approximations or simplifications to obtain analytical
expressions. Alternatively, one may also simulate the system.
Simulation allows one to keep system idiosyncrasies that hinder
analytical solutions.

1. The Code
The following code illustrates a discrete-time simulation of the M/M/1
queue. We define and use a function named “GetNextEvent” which
takes the number of customers in the system as an argument. It
returns two quantities: the next event type and the time until the
next event. You may think of the return value of the function as a
vector of size 2. The code defines the event types as “eventArrival”
and “eventService”. These are the only two things that can happen.
Either a new arrival or the completion of service. We define these
event types as global variables and assign them values 1 and 2,
respectively. Such definitions are referred to as “enumerate types”
in software languages. The C language, for example, has built-in
features to facilitate enumerated types. Enumerated types help
code readability. Who wants to refer to the card suits as {1,2,3,4}
when it is possible to define {spades,clubs,hearts,diamonds}?

Since we will use the enumerated types, as well as the arrival and

- 129 -

service rates in the main body of the code as well in the function, we
defined these as “global variables”.

global rArrive;
global rService;
rArrive =10; // rate: arrival per hour
rService=20; // rate: service completion per hour
global eventArrival;
global eventService;
eventArrival=1;
eventService=2;

Figure 30.1. Global Variables and Enumerated Types.

The function GetNextEvent() is given below. It generates two
exponentially distributed random variables. One is the time to next
arrival, the other, the time to service completion. The function takes
as an argument, the number of customers in the system. If the
number of customers in the system is zero, then only an arrival is
possible. In this case, the function returns eventArrival as the event
type, and the time to the next arrival. If there is one or more
customer in the system, then a comparison is in order. The next
event depends on which random variable is smaller. If it is the time
to the next arrival, then the function returns eventArrival and the
time to the next arrival. Otherwise it returns eventService and the
time to service completion.

function [nextEvent, elapsedTime]=..
GetNextEvent(nCustomers)
 tArrival=grand(1, 1, "exp", 1.0/rArrive);
 tService=grand(1, 1, "exp", 1.0/rService);
 if ((nCustomers>0) & (tService<tArrival)) then
 nextEvent=eventService;
 elapsedTime=tService;
 else
 nextEvent=eventArrival;
 elapsedTime=tArrival;
 end
endfunction

Figure 30.2. The Function GetNextEvent().

Once again, we use the built-in Scilab function grand() to generate
the exponentially distributed random variables.

- 130 -

The main portion of the code is rather straightforward. We initialize a
few variables and run the simulation until we reach the end of the
run time.

tRunTime=100; // hours
nCustomers=0; // number of customers in the system
tEmpty=0;
tCustomerTime=0;

time=0;

while (time<tRunTime),
 [nextEvent, elapsedTime]=GetNextEvent(nCustomers);
 if(nCustomers==0) then tEmpty=tEmpty+elapsedTime;
end;
 tCustomerTime=tCustomerTime+nCustomers*elapsedTime;
 time=time+elapsedTime;
 if(nextEvent==eventArrival) then
 nCustomers=nCustomers+1;
 end;
 if(nextEvent==eventService) then
 nCustomers=nCustomers-1;
 end;
end;

Figure 30.3. The Main Loop.

The main loop keeps track of time and runs until time exceed the
specified tRunTime. The function GetNextEvent() is called. The
function returns the elapsed time until the next event as well as the
type of the next event. If the next event is an arrival, then the
number of customers in the system is incremented. If it is a service
completion, then the number of customers is decremented. The loop
also keeps track of two performance measures. The first is the total
empty time, kept as the variable tEmpty. The elapsed time is added
to tEmpty if there were no customers in the system. The other
performance measure, associated with the variable tCustomerTime
keeps track of the number of customers in the system multiplied by
the elapsed time. This will be used to compute the average number
of customers in the system.

 fAveCustomers=tCustomerTime/tRunTime;
 fUtilization=tEmpty/tRunTime;

 printf("--- simulated performance measures ---\n");

- 131 -

 printf("Utilization:..
 %8.2f\n", fUtilization);
 printf("Average number of customers:..
 %8.2f\n", fAveCustomers);

 traffic_intensity=rArrive/rService;
 ave_num_in_system=..
 traffic_intensity/(1.0-traffic_intensity);

 printf("--- computed performance measures ---\n");
 printf("traffic_intensity:%8.2f\n",traffic_intensity);
 printf("ave_num_in_system:%8.2f\n",ave_num_in_system);

Figure 30.4. Displaying the Performance Measures.

 The final few lines of the code is given in Figure 30.4. The
performance measures are computed and displayed. Values
obtained from the simulation as well as theoretical values are
displayed.

2. Exercises
1. How quickly does the performance measures converge to the

theoretical values? Experiment with different rates and run times.
How would you quantify the convergence rate describing how
quickly the simulation results approach the theoretical limits?

2. Plot the convergence rate defined in the previous exercise as a
function of the traffic intensity.

3. Compare the efficiency of the two simulation programs given in
this and the previous chapter. What are the advantages and the
disadvantages of continuous-time simulation versus discrete-event
simulation?

- 132 -

XXXI. SIMULATING THE G/G/1 QUEUE
The G/G/1 queue is like the M/M/1 queue, except that the inter-arrival
and service time distributions are allowed to be general gistribution.
The letter 'G' denotes a general distribution.

It must be noted that the code given in the previous chapter works
only because the exponential distribution is a memoryless
distribution. That is, at and given time, the remaining time to the
next arrival is still exponentially distributed with the same rate,
irrespective of how long we have waited for the arrival. The same
goes for service completion. Thus, our function GetNextEvent()
generates two random variables, and uses only one of them,
disposing of the other. The service completion time is obtained the
same way, no mater how long the current customer has been in the
system. If the service time distribution is not memoryless, then we
must obtain a service completion time and associate it with the
customer. A good way to do this is by placing all the arrival times
and service times in a vector. Similarly, one could then compute
another vector of service completion times. Finally, a run through
the arrival times and service completion times will allow us to collect
the performance measure statistics. The following code implements
such a strategy.

1. The Code
As usual, the code starts with generating a vector of inter-arrival
times and service times. Again, we make use of the built-in Scilab
function grand() to generate the inter-arrival and service times. In
the code given, we use the uniform distribution. However, the code
is general, and would work with any distribution.

nTotalArrivals=100; // determines run time
// arrival times and service (processing) times
arrivalTimes=grand(nTotalArrivals, 1, "unf", 0.0, 4.0);
serviceTimes=grand(nTotalArrivals, 1, "unf", 0.5, 1.5);

for n=2:nTotalArrivals
 arrivalTimes(n)=arrivalTimes(n)+arrivalTimes(n-1);
end

Figure 31.1. Generating the Inter-arrival and the Service Times.

Rather than the time between arrivals, we cumulatively add the
inter-arrival times so that the k-th element of the vector arrivalTimes
holds the time at which the k-th customer arrives. That is, the

- 133 -

elements of the vector become timestamps, rather than inter-arrival
times.

Similarly, the service completion times are computed and placed in
the vector departureTimes. Again, the k-th element of this vector
shows the time at which the k-th customer leaves the system.

// generate service completion times
waitTime=0;
lastCompletionTime=0;
departureTimes=[];
for n=1:nTotalArrivals
 waitTime=max(0, lastCompletionTime-arrivalTimes(n));
 departureTimes(n)=arrivalTimes(n)
+waitTime+serviceTimes(n);
 lastCompletionTime=departureTimes(n);
end
tRunTime=departureTimes(nTotalArrivals);

Figure 31.2. Generating the Departure Times.

In computing the departure times, we must add to the arrival time
not only the service time, but also the time that the customer spends
waiting in the queue. We compute the latter as the variable
waitTime. We also keep track of the time the last customer is
served, as variable lastCompletionTime. The simulation run time
(tRunTime) is simply the time the last customer leaves the system.
Alternatively, you could cut the simulation when the last customer
arrives. As long as the number of customers is high enough, these
two approaches would give similar results.

The rest of the code simply goes through the arrival times and the
departure times to collect the statistics. Again, we keep track of the
time the system is empty and the product of the number of
customers and the elapse time. The loop makes use of two indices.
The variable indexArrival denotes the index of the most recent
customer who arrived. Similarly, the variable indexDepart holds the
index of the customer who most recently left the system.

// run simulation collect data
nCustomers=0; // number of customers in the system
tEmpty=0;
tCustomerTime=0;
indexArrive=1;
indexDepart=1;
time=0;

- 134 -

while (indexArrive<nTotalArrivals)

if
(arrivalTimes(indexArrive)<departureTimes(indexDepart))
then
 // next event is an arrival
 elapsedTime=arrivalTimes(indexArrive)-time;
 if(nCustomers==0) then tEmpty=tEmpty+elapsedTime;
 else
 tCustomerTime=tCustomerTime+elapsedTime*nCustomers;
 end
 nCustomers=nCustomers+1;
 time=arrivalTimes(indexArrive);
 indexArrive=indexArrive+1;
 else
 // next event is a departure
 elapsedTime=departureTimes(indexDepart)-time;
 tCustomerTime=tCustomerTime+..
 elapsedTime*nCustomers;
 nCustomers=nCustomers-1;
 time=departureTimes(indexDepart);
 indexDepart=indexDepart+1;
 end
end

Figure 31.3. The Main Loop.

The remainder of the code is similar to the one given in the previous
chapter. It computes and displays the performance measures.

 fUtilization=1.0-(tEmpty/tRunTime);
 fAveCustomers=tCustomerTime/tRunTime;

 printf("--- simulated performance measures ---\n");
 printf("Utilization: %8.2f\n",..
 fUtilization);
 printf("Average number of customers: %8.2f\n",..
 fAveCustomers);

Figure 31.4. Displaying the Performance Measures.

Although the code is a bit longer than the one given in the previous
chapter, we note that it is written not for efficiency or code size but
for readability. It is written to be logically organized. You may feel

- 135 -

that the three separate loops could indeed be combined to improve
efficiency. This, however, would make the code less tractable. Once
again, our objective is to illustrate the fundamental principles. You
are encouraged to experiment with the code and try to merge some
of the steps to improve efficiency.

2. Exercises
1. The code given above uses the uniform distribution to generate

inter-arrival and service times. Experiment with the distribution
parameters and observe their effect on the utilization factor and
the average number of customers in the system.

2. It was mentioned that the utilization factor of the M/M/1 queue is
the traffic intensity. Check if the same true for the uniform
distributions. Consider the traffic intensity to be the ratio of the
mean service time to the mean inter-arrival time.

3. Modify the code and try several other distributions such as the
Erlang or beta distributions. Please note that the inter-arrival
times and service times must be non-negative. Compare the
results to the M/M/1 queue with the same mean inter-arrival time
and the mean service time. Which distribution leads to a higher
utilization rate? Why?

- 136 -

Alphabetical Index
Arc...71
Arrival rate..124
Assignment problem (the)...63
Autocorrelation...20
Bi-section method (the)..29
Central limit theorem (the)...113
Chaos..19
Combinatorial optimization...47
Console...2
Constraint...85
Continuous-time simulation..124
Curve fitting..117
Delphi Method...101
Dijkstra'a algorithm...72
Discrete-event simulation...129
Discretization..123
Due date...67
Earliness...67
Edge..71
Editor..4
Enumerate types...129
Exponential Smoothing...103
Facility location...43
Flowtime...67
Ford-Fulkerson algorithm...81
Functions...7
G/G/1 queue (the)...133
Global variable..67, 130
Graphs..7
Growth models..13
Heuristics..51
Histogram...107
Hungarian algorithm (the)...63
Inventory control...37
Knapsack problem (the)..47
Lateness..67
Law of large numbers (the)...111
Least-squares method (the)..118
Linear equations...9
Linear Programming..85
M/M/1 queue (the)...123

- 137 -

Makespan..65
Matrix operations..9
Maximum flow...81
Monte Carlo Analysis...97
Moving Averages...101
Multiple regression..117
Network...71
Node...71
Nonlinear programming..93
Numerical differentiation..23
Numerical integration...25
Objective function...85
Randomness...19
Recurrence..39
Recursion..77
Regression..118
Scheduling..67
Secant method (the)...33
Service rate...124
Service times..123
Shortest path..72
Simple regression..117
Simulation...123
Statistical forecasting..101
Structured programming...60
Tardiness...67
Traffic intensity..126
Traveling salesman problem (the)...55
Vertex..71

- 138 -

REFERENCE TEXTBOOKS

Avraham Shtub, A. and Y. Cohen , Introduction to Industrial
Engineering, 2nd Edition, CRC Press, Boca Raton, FL, 2015, ISBN
9781498706018.

Hildebrand, F. B., Introduction to Numerical Analysis, 2nd Edition ,
Dover Books on Mathematics, Mineola, NY, ISBN-13: 080-
0759653638 / ISBN-10: 0486653633 (reprint of the McGraw-Hill
Book Co., NY, 1956 edition).

Hillier F.S., and G.J. Lieberman, Introduction to Operations Research,
7th Edition, McGraw Hill, Boston, MA, 2001 , ISBN 10:
0072321695 / ISBN 13: 9780072321692.

SOFTWARE SOURCES
Example code used in this book, books.yeralan.org, 2016.

Scilab, www.scilab.org, 2016.

Octave, www.gnu.org/software/octave/, 2016.

- 140 -

http://www.gnu.org/software/octave/
http://www.scilab.org/
http://books.yeralan.org/

	I. Engineering Computation Software
	1. The Command Line
	2. The Editor
	3. Exercises

	II. Functions and Graphs
	1. A Simple Graph
	2. Exercises

	III. Linear Equations
	1. Matrix Operations
	2. An Example
	3. Exercises

	IV. Growth Models
	1. Graphing Growth
	2. Graphing Limited Growth
	3. Exercises

	V. Chaos and Randomness
	1. An Implementation
	2. Exercises

	VI. Simple Numerical Differentiation
	1. An Example
	2. Exercises

	VII. Simple Numerical Integration
	1. An Example
	2. Exercises

	VIII. A Simple Algorithm: The Bi-Section Method
	1. An Example
	2. Exercises

	IX. A Simple Algorithm: The Secant Method
	1. An Example
	2. Exercises

	X. An Inventory Model
	1. The Model
	2. Cost Components
	3. The Code
	4. Exercises

	XI. Facility Location
	1. An Example.
	2. The Code
	3. Exercises

	XII. Combinatorial Optimization: The Knapsack Problem
	1. An Example
	2. Exercises

	XIII. Heuristics for Combinatorial Optimization: The Knapsack Problem
	1. A Heuristic for the Knapsack Problem
	2. The Code
	3. Exercises

	XIV. Combinatorial Optimization: the Traveling Salesman Problem
	1. The Code
	2. Exercises

	XV. A Heuristic for the Traveling Salesman Problem
	1. The Code
	2. Exercises

	XVI. The Assignment Problem
	1. The Code
	2. Exercises

	XVII. Scheduling: The Single Machine Case
	1. Minimize Average Flowtime
	2. Exercises

	XVIII. Network Models: Shortest Path
	1. An Example
	2. An Algorithm
	3. The Code
	4. Exercises

	XIX. Recursive Network Algorithms: Find a Path
	1. Find A Path From Source to Sink
	2. Exercises

	XX. Network Models: Max Flow
	1. Support Functions
	2. The Main Program
	3. Exercises

	XXI. Linear Programming
	1. The LP Model
	2. A Naive Approach
	3. A Smarter Approach
	4. Exercises

	XXII. Constrained Nonlinear Programming
	1. The Code
	2. Exercises

	XXIII. Monte Carlo Analysis
	1. The Code
	2. Exercises

	XXIV. Statistical Forecasting
	1. Moving Averages
	2. Exponential Smoothing
	3. Exercises

	XXV. Working with Noisy Data
	1. Representing Data
	2. Drawing Histograms
	3. Exercises

	XXVI. The Law of Large Numbers
	1. The Code
	2. Exercises

	XXVII. The Central Limit Theorem
	1. The Code
	2. Exercises

	XXVIII. Curve Fitting (Simple and Multiple Regression)
	1. The Least-Squares Method
	2. The Code
	3. Exercises

	XXIX. Simulating A Simple Queue
	1. A Specific Queue
	2. Exercises

	XXX. Discrete-Event Simulation
	1. The Code
	2. Exercises

	XXXI. Simulating The G/G/1 Queue
	1. The Code
	2. Exercises

	Alphabetical Index
	Reference Textbooks
	Software Sources

