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FOREWORD

As a scholar of literature and the humanities, I surely am an outlier
even among the “heterogeneous group of readers” that Professor Yer-
alan imagines for this text. It has been enlightening for me, however,
to see confirmed here what I have long suspected from the stimulating
and wide-ranging conversations that I have enjoyed with the book’s
author over a number of years: we are both engaged, at the level of our
subject matter, with the question of systems, their functioning and,
as my particular academic inclination might insist, their necessary
dysfunction. While the author’s childhood preoccupation with Tinker
Toys led him to opamps and beyond, it now occurs tome, thanks to the
clever framing of this text, that it is perhaps my own early exposure to
Meccano that contributed to my understanding of texts as dynamic,
diachronic systems. Primarily, it has been a pleasure, in reading this
book, to recognize with fondness and respect the wise and humane
voice of my good friend, esteemed colleague and fellow concerned
pedagogue as he wittily engages and cheerfully accompanies his stu-
dents and readers on their journey of initiation into his particular clan
within the larger academic community.

Trevor John Hope
Izmir, March 2023
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PREFACE

In the late 80s, while I was working as a design engineer, I heard a
cabinet maker say “youmust standardize to customize”. I am sure he
was not the one who coined the phrase, but nonetheless, I heard it
first from him. I played with Tinker Toys and Erector sets when I was
a kid. I also knew that Lego was big – not quite exciting as my Erector
set, but fairly rich in its offerings. Erector sets always gave me a sense
of engineering – literally nuts and bolts engineering.Whereas Lego
seemed like the Lincoln Blocks some friends had.

To customize, you standardize – and operational amplifiers, affec-
tionately called opamps, are perhaps the best example of this to an
electronics engineer. You can make all sorts of things with opamps.
Back then, it was the building block of analog computers – you know,
the ones that had fancy cable connections reminiscent of the old tele-
phone plug-boards.With these, you could integrate, differentiate, add,
and subtract, and solve all sorts of differential equations. We liked
differential equations – we thought they were the language of nature.

Later, as I started designing electronics systems for industry, I was
often the “go-to” person to come upwith analog circuitry. It is amazing
whatmiracles a few transistors could do. Plus, using transistors is a bit
like solving puzzles. It is both a challenge and an urge to seek elegance.
If you design a circuit that does the job, and is nothing like you have
seen before, there is an undefinable, inexplicable buzz, the satisfaction
of which would not be traded for anything. I see the students missing
out on that – I imagine there is no buzz if you find somethings on
Wikipedia, sort of similar, not quite, but enough to forcefully shoehorn
in as a surrogate solution.

But there was another way. Starting in the 80s, opamps became
quite robust and capable, as their process went lower than a snake’s
belly. These had such high performance for pennies, to us seasoned
engineers, they seemed pure magic. Rail-to-rail operation, low noise,
no offset or thermal drift to speak of, high frequency-gain suitable for
almostRF–wow.Nowwhywouldanyoneusediscrete transistorswhen
you could use an opamp? I held on perhaps for reasons of nostalgia, or
a puritanical fixation to be contentwithmodesty on the board. Perhaps
I wanted to show off, “see how I can still design transistor circuits”.
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But as prices dropped further, it started looking silly. When the cost
of board space and assembly of discrete components became higher
than opamps, the camel met its last straw.

This book was written as I taught an engineering course in circuits
at the International University of Sarajevo. I tried to focus not only on
opamps but add into the mix several relevant concepts. Since many
non-electrical engineers took the course, it was important to frame the
subject as a general engineering challenge, and to appeal to intuition.
The hope is for the insights to carry over to other subjects of study as
this heterogeneous group of readers would part their ways soon. I also
wanted my students to see the human side of a practicing engineer.
All with its shortcuts, rules of thumb, “back-of-the-envelope”s, and “good
enough”s.The book follows step by stepmy class preparations. So it also
embeds, to some extend, the contributions of the sophomore class of
2021. Parts where I had to revisit in subsequent class discussions nat-
urally ended up covering more pages.The parts of the book skimmed
over are the ones that classmore readily understood and felt no further
need for amplification. Most of it was written in real time, youmight
say, from late March to May, 2021.

Sencer Yeralan, PE, PhD
Sarajevo, June 2021
www.ius.edu.ba

www.yeralan.org
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ABSTRACT

Engineering requires knowledge, skills, intuition, and pragmatism.
It is more than a philosophical treatment of understanding. It is a
craft. It takes time to master. And before you master, you must go
through the early steps of apprenticeship.This all implies that you go
over and over a topic, as each time you gain more understanding and
your intuition deepens, and finally you feel comfortable with even the
meta-engineering issues such as the societal or ethical.

A choice had to bemade early on – should this be a complete treatise
on operational amplifiers, or just a superficial first look, or somewhere
in between? A complete in-depth treatise would require some back-
ground in transfer functions, systems modeling, complex calculus,
etc. An intermediate book is perhaps the most difficult of all since it is
context dependent.That is, a good understanding of what the reader
knows and what is lacking becomes crucial.

This textbook pursues the other extreme. It is written as a practical
guide to introduce the reader to operational amplifiers as an initial
rather informal exposure.There is very little use of mathematics, and
as such, it is suitable for anyone who has an interest in the topic. Our
emphasis is on practicality and intuition rather than rigor.Those who
are embarking on a career in electronics will undoubtedly go over the
topics in this book inmuchmore detail. Repetition is essential, as each
time you go a bit deeper into the subject matter. This book aims to
be a good first exposure. In addition, it may be used as a laboratory
reference book for high school or university courses, or by hobbyists
whowould like to tinkerwith electronics and not necessarily go further. Comments and

suggestions are

welcome.Mail to

sy@yeralan.org

The book is written in a conversational tone, as an experienced de-
sign engineer telling stories of days gone by dealing with volts, feed-
back, rain-dancing to make the circuits work, and smoke that was left
in the chips by the manufacturers – smoke that had to be let out for
proper operation.

https://www.yeralan.org

X

https://www.yeralan.org


Be conservative in what you do, be liberal in what you accept from others.

Jonathan Bruce Postel, September 1981

Baseball is 90%mental and the other half is physical.

Yogi Berra
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Part I

INTRODUCT ION

What is an opamp? How to conceptualize opamp func-
tionality. Simple circuits, baby steps.

GAP/R K2-W vacuum tube operational amplifier, 1952



1
THE OPERAT IONAL AMPL I F I ER

1.1 a first look

Electronics deals with information expressed and processed as some
quality of electric flow, typically voltage. In common applications, it
is quite straightforward to convert other attributes of electricity to
voltage.The simplest example would be how current through a resistor
creates a proportional voltage drop. Operational amplifiers, or as we The term

“operational

amplifier” is

more

conventionally

abbreviated as

“op amp”, that is,
as two words.We

will simply

concatenate and

say opamp

will abbreviate throughout thebook, opampsarebest viewedasbuilding
blocks that deal with voltage. In ideal opamp has two inputs and one
output. The inputs are referred to as the non-inverting input and the
inverting input. These are oftenmarked by (+) and (-) respectively.The
output of an ideal opamp takes the difference of the voltages of its two
inputs and amplifies this voltage by infinite gain. Let the voltage at
the non-inverting input be V+ and at the inverting input be V−. Let
Vout denote the output voltage. An ideal opamp generates an output
following the relation,

Vout = G∞(V+ − V−) (1.1)

whereG∞ denotes infinite gain.

1.2 idealization

Clearly, an ideal opamp is indeed and idealization.Most obviously, there
is no such thing as infinite gain. A typical opampmay have a gain at
least six orders of magnitude. But 106 is not infinity. Another ideal-
ization, perhaps not immediately obvious, is that the output cannot
exceed the supply voltages available in the circuit. There must be some
voltage range available to power the circuit, say±12V.Whatever equa-
tion 1.1 says, the output will most likely be somewhere in this range.
That is, with a gain of a million, and V+ = 0.5V and V− = −0.5V,
equation 1.1 predicts an output voltage of 1, 000, 000V. This clearly
is not happening.What happens is that the output will be as high as

2



1.2 idealization

possible until it hits the supply voltage (or maybe somewhere a bit
below that). We would say that the opamp is saturated. Let us dwell
on another aspect of the idealization. It seems nomatter how small
the voltage difference between the inputs are, the opamp will sense
the difference and amplify this value. There probably is a threshold
of sensitivity, which we pretend is not there. For practical purposes,
wemay be forgiven, but nonetheless, this is an idealization.We also
ignore any noise that may be present in the inputs. Similarly, we may
ignore changes in characteristics, say in gain, with temperature. Actu-
ally, if you want to get fancy, youmay entertain the thought of what
happens when an opamp is accelerated to relativistic speeds. More
realistically, down to Earth, though, there must also be (and of course,
is) a time limit.That is how fast can an opamp react. Another way of
asking this is “Is there a frequency limit to the input signals?”. And
the answer is “Yes, of course.” Often, the frequency and gain are con-
sidered to be coupled, as we speak of the gain-times-frequency of an
opamp. Onemay say, that 106 is the gain-times-frequency. So when
the input frequency is, say 10, then the gain will be reduced by the
same factor and be 105. The good news is that for simple applications,
say audio-frequency-range applications, or DCmotor applications for
mechatronics, a self-balancing-robot, for example, even a run-of-the-
mill opamp is plenty fast and gainful enough.

Is that all? Well, not really. There are several other aspects which are
not ideal. Let us name a fewmore.

We said the output voltage is a largemultiple of the difference of the
inputs. How linear is this?Well, for simple applications, we assume
it is linear enough. Similarly, we assume that the output is capable of
driving some load.Howmuchpower could theoutput supply?Typically,
not very much.The output impedance of a typical opamp would be in
the 100Ohm range. Still, this is plenty for signal processing.There are
opamps, called power operational amplifiers that are capable of supplying
several Amps of current. Some are used as audio amplifiers or linear
DCmotor drivers.On the inputs side,we assume that the impedance at
each input is infinitely high.That is, the inputs sense voltages without
loading the signal sources. Typically, the input impedances are at least
a megaOhm or more, higher when FET input stages are implemented.
Most modern opamps are made with MOSFET circuitry, so the input
impedances are indeed quite high.

3



1.3 let us build a circuit

1.3 let us build a circuit

Pick up your breadboard and start building a circuit. For this, we will
use the good-old 741 opamp. There is good history of this industry
workhorse. Youmay, of course use another opamp, but the basic prin-
ciples will hold the same.

Here is the circuit diagramwe will use.The pinout is given for the
8-pin DIP (Dual-Inline-Package) version of the chip. Note that there
are two pins we do not use.These are to compensate for any null offset
errors. When there is zero difference between the input voltages, the
opamp output is not always zero, because of the minute differences
among the input circuits due to manufacturing tolerances. So, this
offset may be nulled by external compensation resistors.The offset is
too small to make a difference in our example. For the time being, we
just leave these pins unconnected. Also note that the package has pin
8, which is internally not connected to anything (designated in data
books as anNC pin).

Figure 1.1: Simple Opamp Circuit.

You need a split-voltage lab power supply. Set the voltages to be
around 9-12 V – DC of course.Themid voltage is called the reference
or ground. If you like, youmay use two batteries andmake a simple
power supply, sufficient to run the circuits below.
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Figure 1.2: Battery-Powered Split Power Supply.

In the circuit, see how the opamp is supplied by the split voltages.
Theoutput is connected to a voltmeter.Theoutput voltage is once again
measured with respect to the reference or ground voltage.The invert-
ing input too is connected to the reference or ground. Finally, a po-
tentiometer is placed between the plus andminus outputs of the split
voltage supply. Its wiper terminal is connected to the non-inverting in-
put of the opamp. As you tweak the potentiometer, the voltage applied
to the opamp will vary the full range of voltages, from the negative
supply to the positive supply.

What do you expect to see?

Since the opamp output is a large gain times the difference between
the voltages seen at the non-inverting and inverting inputs of the
opamp, while the potentiometer wiper voltage is above the reference
(ground) the opampoutput should be high.Conversely,when thewiper
voltage is below the reference voltage, the opamp output should be
low. How high and how low? Well, since the gain is very high, and
adjusting the potentiometer just right is practically impossible, you
may expect the output to be saturated.That is as high as, or as low as,
the opamp can possibly make it. Try to get an intermediate voltage.
If you can, it would mean that you have adjusted the potentiometer
just right so that the wiper voltage is (almost) exactly equal to the
reference voltage. Expect the potentiometer to be very sensitive, why?
Well, because the opamp has very high gain.The smallest perturbation
of the potentiometer will disturb the very fine adjustment, and the
output will be saturated high or low.
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1.4 simulation – the next best thing

If you cannot build the circuit, there is a way to gain considerable
insights by using a circuit simulator. We use QUCS which is an open-
source simulator that has all the features we need1. It works quite well
on Linux. Nowadays there are many choices when it comes to circuit
simulators.They are all quite user-friendly. You draw the circuit and
simply run a simulation. QUCS uses the SPICE package of your choice.
But generally, the default configuration is all we need. Figure 1.3 shows
the simple circuit drawn in QUCS.

Figure 1.3: QUCS Circuit.

The 741 opamp is powered by two 9V supplies. A 1k resistor is placed
as the output loadof the opamp. Insteadof apotentiometer, this circuit
uses an AC voltage source to simulate the back and forth tweaking of
the potentiometer. The AC voltage source is set to have a frequency
of 10 Hz and an amplitude of 1.25V.There are two voltmeters, called
probes in QUCS. Probe Pr1 measures the voltage applied to the opamp,
while Pr2 measures the output voltage of the opamp.

Running the simulator, wemay graph what the probes “see”.

The blue line in the graph (Figure 1.4) corresponds to Pr1, showing
the input signal. As seen, the frequency is indeed 10 Hz, since each
cycle takes 0.1 seconds.The red line shows what Pr2 sees at the output.
As seen, the high gain of the opamp means that the output is quite
quickly saturated, hitting the upper and lower bounds of what the
opamp canmuster.

1 QUCS home page: http://qucs.sourceforge.net/
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Figure 1.4: Simulation Output Plot.
(red: opamp output voltage, blue: input voltage)

1.5 a useless toy?

Well, trying to balance the potentiometer of Figure 1.1 might be fun,
but the circuit is really not that useful, other than verifying that the
output is indeed a large gain times the differences in input voltages.
Or is it?

Well, actually, the circuit is at the heart of many opamp circuits. In
the parlance of electronics, it is called a voltage compatator. Say youwant
to detect if the fuel level is low and turn on a warning light. Or, if there
is enough light, so that you want to turn off your outdoor patio lights.
Or some device has overheated and you want to trip a fuse. You get the
picture.

Take a look at the circuit 1.5. LDR is a light-dependent resistor whose
resistance is high (say 100k) in the dark, but low (say 1k) when there is
light. Along with the 10k resistor, it forms a voltage divider to supply
the inverting input of the opamp. As light shines, the voltage at the
inverting input drops, so the opamp output is high.The non-inverting
input is connected to our trusted old potentiometer. Here, you may
set the reference voltage, or the threshold.This way, you can trigger
the output at a certain light intensity.

You must have noticed that rather than specifying the exact com-
ponent we now use a generic diagram to represent the opamp. Nor
did we show the pin numbers or the power pins.This is done to reduce
clutter. When you perform your experiments, you will need to take
care tomake the right connections and provide the split-voltage power
supply. We will do this from now on to reduce clutter in our circuit
diagrams. In practice, the exact version of the opamp will depend on
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Figure 1.5: Light Detector.

many considerations, such as supply voltage, gain, input and output
impedances, packaging, etc. As seen, the circuit is essentially a voltage
comparator. Many an opamp end up with a lifelong career as voltage
comparators. Here is another example: circuit 1.6 uses a thermistor.
The resistance of a thermistor changeswith temperature. So, in a sense,
it is just like an LDR. To be more specific, this thermistor is a negative
thermal coefficient one, that is, its resistance drops as it gets hot.There
are also positive temperature coefficient thermistors. Curiously, there
are no zero temperature coefficient thermistors. I wonder why...

Figure 1.6: Temperature Detector.

Does the fact that the gate of the transistor could be close to the
negative supply voltage (say−15V ) while the source is atGND? Well,
you may inset a clamping circuit to make sure the gate does not fall
below the source. This means a few extra components. A glance at If this did catch

your eye and

somewhat

bothered you

emotionally,

congratulations,

you have the

compassion to

become a good

electronics

engineer.

the 2N7000 datasheet shows that the transistor safely operates with a
gate-source voltage of±20V. So, no need to panic or feel sorry for the
transistor – it is tough enough to handle it.

Circuit 1.6 gets a bit fancy as the output drives a buzzer through a
small N-channel enhancementmodeMOSFET. I have used the 2N7000
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inmany a circuit as drivers.The circuit starts looking busier, but with a
trained eye, you should have no trouble seeing the voltage comparator
that forms the basis of the device. Having such circuitry X-ray vision
comes not only with experience, but also by paying attention to pat-
terns and structures. If you start seeing structures and patterns, you
are on your way to becoming an accomplished electronics engineer.

So, when will the circuit buzz?When the thermistor resistor drops,
or when the temperature exceeds a threshold set by the potentiometer.
Put this circuit in your refrigerator, and it will complain when you
leave the door open longer than reason.

1.6 the secret ingredient is feedback

Our very first circuit 1.1 is an example of an open-loop amplifier. It
does not take much to saturate an opamp.The inputs are “unaware” of
what the output is doing. Using information from the output to alter
the input is the fundamental concept of feedback. The topic of feedback
rather invites deep philosophical questions. After all, we often perceive
feedback to have something to dowith intelligence. A thermostat knows
when to turn on the heat, and when to turn it off when the room is
warm enough.The action (turning on the heater) is monitored by the
thermostat, which turns the heater off at a certain temperature.This
is the insight that leads us to the followingmodification.

Figure 1.7: Simple Opamp Circuit with Feedback.

Now let us try to predict how the circuit will react. Once again, we
have a voltmeter measuring the output voltage. The non-inverting
input is connected to thepotentiometer, as before, allowingus to sweep
input voltages throughout the rangeof the split power supply.However,
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the inverting input is not simply connected to the reference ground.
It is connected to R1 and R2.Think of R1 and R2 as a voltage divider. Wewill be

talking about

voltage dividers
a lot in this book.

Since their values are the same, the inverting input will see a voltage
exactly half of the output voltage measured by our voltmeter. So far, so
good.

Now letus sayweset thepotentiometer toput1V to thenon-inverting
input.The opampwill react. If the inverting input voltage is lower than
1V the opamp output will rise. But how far? Will it saturate as before,
to 12V or so? No. If it did the inverting input would see a voltage of 6V.
Since then the voltage at the inverting input of the opamp is higher
than that at the non-inverting input, the opamp will react by reducing
the output voltage.

A little reflection will convice you that, when the voltage at the non-
inverting input is 1V, so will the voltage at the inverting input. This
means that the output will be at 2V. In fact, the output of the opamp
will settle at twice the voltage at the non-inverting input. Any higher,
then the opamp will reduce the voltage, and any lower, the opamp will
increase the voltage. So the feedback loop is a corrective one.Corrective
feedback is also known as negative feedback.

It is best if you build the circuit and examine how it works. If that is
not an option, the next best thing is to simulate the circuit. Here we
have the circuit as itwas implemented inQUCS. It is a simple extension
of our previous circuit, Figure 1.3.The input is an AC voltage source
with frequency 10 and an amplitude of 0.5 V.

Figure 1.8: Simulated Opamp Circuit with Feedback.
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When simulated, we may once again observe the input (the blue
graph) and the output (the red graph).

Figure 1.9: Simulation Output of the Opamp Circuit with Feedback.
(red: opamp output voltage, blue: input voltage)

Thesimulator output is as expected.Theoutput is synchronizedwith
the input, but its amplitude is double that of the input.The output is
exactly twice the input, is it not? Youmay also verify that the input is
exactly 10 Hz.

1.7 a bit of intuition

When an opamp is run at a self-correcting stable manner, the voltages
at the two inputs are almost identical.That is, the differencemultiplied
by a very high gain is a small voltage, between the± supply voltage,
that we see at the output. For this to happen, the voltage difference
must be that small value divided by the very large gain.Thus, wemay
think of the two inputs as having essentially the same voltage.

Negative feedback makes the circuit stable. With negative feedback,
when the output overshoots, the response is to lower the output. Sim-
ilarly, when the output is below the stable equilibrium point, the re-
sponse is to increase the output. The response is always opposite to
the error. Opposite, hence negative feedback.

1.8 a bit of computation

Let us start with the circuit 1.7. Let R1 and R2 be arbitrary values.The
voltage V− at the inverting input will be
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V− =
R1

R1+ R2
Vout (1.2)

Since we are convinced that V− and V+must be essentially equal,

V+ =
R1

R1+ R2
Vout (1.3)

or,

Vout =
R1+ R2

R1
=

(
1+

R2

R1

)
Vin (1.4)

Equation 1.4 perfectly describes the behavior of our circuit. But allow
me to add one final comment.We often prefer to describe and think
of the behavior of a circuit in terms of its so-called transfer function.
We will use transfer functions extensively, especially as we combine
subcircuits.Then the transfer function of the circuit will be evaluated
as a function of the individual transfer functions of the subcircuits.
The transfer function is simply the time-dependent output divided
by the input. Why? Well then you may express the output as the in-
put times the transfer function. In other words, the transfer function
transforms the input to the output. Here the transfer functionH(t) is
not a function of time, but a mere constant.

H(t) =
Vout(t)

Vin(t)
= 1+

R2

R1
(1.5)

1.9 tempered gain

It seems that the gain of the circuit is tempered, brought down from
almost infinity to a constant of our choosing. Is it possible to make
the gain of the circuit exactly unity (1)? Well, certainly. Notice that
Figure 1.10 may be viewed as Figure 1.7 where R2 = 0 and R1 = ∞.
Then, according to Equation 1.4, the output will be the same as the
input.This circuit, where the gain is unity, is known as a voltage follower.

What, if any, youmay wonder, is the use of a voltage follower – a cir-
cuit that seems to be no different from a simple wire that connects the
output to the input.This is a good question, not because it is a difficult
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Figure 1.10: Voltage Follower.

one, but because it marks a certain milestone. If you can instinctively
feel the answer to this question, you are on your way to becoming a
good electronics engineer.

The typical simple answer has to do with impedancematching. Sup-
pose you have a very sensitive sensor that puts out a voltage but very
little current. If you would like to use the output of the sensor to drive
a circuit, then you do not want to load the sensor.That is, you do not
want to draw much current from the sensor. Another way of saying
this is that the sensor has high output impedance. If you connect the
sensor to a LED, for example, it will not have enough power to light the
LED. It would practically be useless. If you use a voltage follower as in
Figure 1.10, then the opamp, with its high input impedance could read
the voltage and provide an output suitable to light the LED. So, essen-
tially, the voltage follower converts a high-impedance input to a low
impedance output. Youmay think of connecting amicrophone directly
to a speaker, and see that it is futile to expect to hear anything from
the speaker. The microphone (say a crystal microphone) has a high
impedance, say 10 kOhm, whereas the speaker has a low impedance,
say 8 Ohm. The term amplifier in opamp fits, does it not?

1.10 is all feedback negative?

An opamp is indeed a versatile device. We saw that negative feedback
has something to do with stability. The output swings opposite the
the error, and thus always tries to reduce the error, whatever that
may be. Here is a case that I faced. Not unlike the LDR and thermistor
circuits, I had a circuit that ran awell pumpwhen the pressure dropped
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below a certain threshold. So, replace the thermistor with a pressure
gauge, beef-up the output transistor, which in this case was driving a
relay, and voilà, you have smart pump.Whenever the pressure drops
the pump kicks in. Even if you do not use the water, pressure drops
due to leaks, evaporation, etc. Now, here is the problem: the pressure
drops below the threshold, fine.The pump kicks in, fine. After just a
fraction of a second, the pressure builds up, and the pump kicks off
once again, fine. But a little leak meant that the pressure immediately
drops, ever so slightly, once again triggering the whole cycle over.The
pump sounded like a misfiring engine, kicking in and out, causing
wear and tear.

What we need is, in the parlance of electronics, hysteresis. This is a
fancyword, borrowed fromGreek,meaning something close to lagging
behind. We want the pump to kick in at a certain pressure, say P0 and
remain on until it reaches pressure P1 > P0, not immediately. Lag
behind a bit, if youwill. As the leak slowly reduces the pressure fromP1

and P0, the pump remains off. The same type of hysteresis is common
in HVAC units, where there typically is a cut-off temperature and a
trigger (cut-in) temperature, with a few degrees of difference between
them.

Nor surprisingly, it is rather easy to incorporate hysteresis into volt-
age comparator circuits. Consider the one below (1.11).The pressure
sensor output is fed into the inverting input of the opamp. If pressure
drops, so does the sensor output voltage.When this voltage is below
that seen at the non-inverting input, the opamp is triggered and the
relay energized, thereby turning on the pump.When the pressure is
high enough, the pressure sensor output exceeds the voltage seen at
the non-inverting input, and the relay is switched off. Here is the crit-
ical point: what is the voltage seen at the non-inverting input of the
opamp? Unlike previous circuits, we see that there are two resistors,
R1 and R2 that form some sort of feedback, but this time, it involves
the non-inverting input. Once again, wemay consider R1 and R2 to
form a voltage divider.There is a bit of engineering intuition needed
here. Note that the reference potentiometer has a value of 1k, an order
of magnitude lower than the feedback resistor R1 and two orders of
magnitude lower thanR2.Wemay assume that the voltage at thewiper
terminal of the potentiometer is not affected by the current flowing
through the feedback resistors. In other words, wemay assume that
the reference set by the potentiometer is fixed throughout the opera-
tion of the circuit. Let this voltage beVref. Let the output of the opamp
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be Vhi when saturated high, and Vlo when saturated low.We expect
Vhi and Vlo to be approximately the split power supply voltages.

Figure 1.11: Pump Driver with Hysteresis.

When the opamp output is high, the non-inverting input is not at
Vref butVref+Vhi

R1
R1+R2 .This is a little over the reference threshold

set by the potentiometer. For the pump to turn off, the pressure has
to build up a little over that determined by Vref. Once the pressure
exceeds the threshold and the pump kicks off, the output is Vlo. Now
the voltage seen at the non-inverting input isVref+Vlo

R1
R1+R2 . Since

Vlo is negative, the trigger point for the pump to kick back in is lower
than that set by Vref. In short, the pump kicks off a little over the
reference point and kicks back in a little under the reference point.The
range is determined by R1

R1+R2 . This is typically small enough not to
create a noticeable pressure difference, but large enough so that the
pump does not cycle on and off too often.

1.11 experimentation and reflection

1. Referring to the circuit 1.7, try different values of R1 and R2 to
see if relationship 1.4 holds.

2. Extend the concepts in circuits 1.5 to trigger the output when
light is below a threshold, within a given range, or outside a
given range. You probably need two potentiometers, one to set
the upper limit of the range, and one to set the lower limit.

3. Repeat the same with thermistors, that is, extend the circuit 1.6.
Try both positive and negative coefficient thermistors.
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1.11 experimentation and reflection

4. Write an equation in the spirit of 1.4 that explains the positive
feedback hysteresis case. Also include cases where the poten-
tiometer is not at least an order of magnitude smaller than the
feedback resistors.

5. Would it ever make sense to have both positive and negative
feedback in a voltage-comparator-type opamp circuit? If so, give
an example.
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Part II

B A S IC OPERAT IONS

Simple signal processing: addition, subtractions, integra-
tion, and differentiation.The bread and butter of all cir-
cuits.

Fairchild Linear Integrated Circuits
µA 702Wideband DC Amplifier, 1963



2
ADD IT ION, SUBTRACT ION, INTEGRAT ION, AND
D I F FERENT IAT ION

Many opamps choose a career path that places them in circuits where
they serve as general-purpose analog signal processors. I say analog,
because there have been other ways for some time now. But, back in
the day, we represented various time-varying physical quantities by a
signal –mostly by the voltage of the signal. A simple example is sound.
The sound waves and the signal that comes from the microphone are
essentially the same in many ways. Say, a pure sinusoidal signal from
the microphone would indicate a pure tone, which if we listened to,
might sound like a nice flute.Wemay amplify, add, subtract, integrate,
or differentiate these signals as we process them. A preamplifier that
combines several audio inputs before sending the composite to a power
amplifier essentially adds the signals, does it not? In the previous
chapter we discussed voltage comparators.These take action based on
the attributes of the signal. So, perhaps, it is not all that inappropriate
even to call those analog signal processors.

In this part,wewill delve into of the the basic signal processing tasks:
amplify, add, subtract, integrate, and differentiate. But before we do
so, let us first develop somemethodology. Here, by methodology, we
mean a general approach to not only howwe think about the tasks, but
some standardized formal solution procedures.These procedures will
be based on a few starting points.This general structure is a formalism.
We have basic premises (axioms of some sort) and rules of inference to
reach desired conclusions.

2.1 golden rules of opamps

When we think of ideal opamps, we assume a set of simplifying condi-
tions.

Most useful of ideal opamp properties in understanding existing
circuits and designing new ones are the summarized.

a. Their input impedances are infinitely large.

b. Their output impedances are relatively low.
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Table 2.1: Characteristics of an Ideal Opamp.

Operation
Open-loop gain ∞
Operating frequency DC to∞Hz

Chip-wide Characteristics
Commonmode rejection ratio ∞
Power supply rejection ratio ∞
Noise non-existent
Temperature drift none

Inputs
Input impedance ∞
Input voltage range −∞ to∞
Input offset voltage 0 V

Inputs
Output voltage range −∞ to∞
Output impedance 0 ohm

c. If the opamp is running in a stable manner (not saturated), then
the voltage at the two inputs are essentially the same.

We are now ready to establish a formal approach to the analysis
of opamp circuits, which will also help us in the design of such cir-
cuits. We will illustrate and gradually build up out comprehension by
examples.

2.2 amplification

Consider the circuit (Figure 2.1) below. Once again, we have the resis-
tors R1 and R2, in a negative feedback configuration.

Let Vin and Vout be the input and output port voltages. These are
shown as little tabs in the circuit.The non-inverting input is connected
to ground. We are now ready to analyze the circuit. Our formalism
goes like this:

• The opamp is run in a stable manner.That is, the output will be
within the range of the supply voltages, not saturated high or
low. A swing in the output voltage is fed back to the inverting
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2.2 amplification

Figure 2.1: Inverting Amplifier.

input, so the response will be in the opposite direction of the
error.

• By Golden Rule c, the inverting and non-inverting inputs will
be at the same voltage level. This means that the inverting input
is at ground reference (0V ).

• Golden Rule a says that the input impedance is infinitely high,
so no current actually enters or exits the opamp.

Putting all this together, the current from the input through R1 is
the sameas the currentflowing throughR2 to the output.The inverting
input is at voltage zero. So,

Vin − 0

R1
=

0− Vout

R2
(2.1)

or,

Vout = −
R2

R1
Vin (2.2)

It seems to me that this is the cleanest opamp configuration. Easy
to understand, with a simple equation that describes its behavior. A
unity inverting amplifier is possible by choosing two resistors with the
same value. Moreover, a non-inverting amplifier may be constructed
by cascading two of these inverting ones. But, you probably would not
do this, and rather just use a voltage follower.

Now, let us consider the non-inverting amplifier (Figure 2.2).

Following the same logical steps, realizing that the circuit is stable,
the inverting inputmust be at the samevoltage level asVin.Thevoltage
at the inverting input is the same as that determined by the voltage
divider comprising R1 and R2. We have,
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2.2 amplification

Figure 2.2: Non-inverting Amplifier.

R1

R1+ R2
(Vout − 0) = Vin (2.3)

or,

Vout =
R1+ R2

R1
Vin (2.4)

or simply,

Vout =

(
1+

R2

R1

)
Vin (2.5)

There we have it. Almost as nice as Equation 2.2, but with an extra
1. When the gain, R2R1 is high, wemay ignore the 1. The good thing is
that the configuration does not invert the polarity of the signal. This remindsme

of the saga of

charge, parity,
and time
reversal
symmetry. Most
thought that the

laws of physics

were symmetric

in charge, parity,

and time. Not so,

apparently.

Many argue that

this is why there

is more matter

than anti-matter

in the universe.

Why do you think there is an additional 1 in the gain when we have
the non-inverting configuration? Of course, you can verify by mathe-
matics, but is there any other way wemay interpret this? Is there any
engineering intuition that would be helpful? Actually, I would answer
in the affirmative. You see, if the feedback resistor is just a wire, zero
Ohms, then the opamps will be voltage followers.The non-inverting
configuration follows the input voltage, hence a gain of 1.The inverting
configuration follows the voltage at the non-inverting input, which is
zero. It does not look like much, but it is those little things that violate
complete symmetry, albeit in a minute way, that provides a glimpse of
how reality is actually not as perfect as wemaymodel in our approxi-
mations. Sure, youmay ignore the 1when gain is sufficiently high, but
there it is, nonetheless.The spice of life, and how lucky us engineers
are, we get to appreciate it.
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2.3 addition and subtraction

Suppose we have two input signals which we would like to combine.
That is, we want to add these signals and create a composite signal.
This could be an audiomixer, for example.Wemay choose an inverting
or a non-inverting configuration. Let us do the former (Figure 2.3).

Figure 2.3: Summer.

Following the same logical steps given for Figure 2.1, we recognize
that current flows into the inverting input fromboth resistorsR1A and
R1B, while the total current, once again, flows through R2. Modifying
Equation 2.1, we have,

Vin_A − 0

R1A
+

Vin_B − 0

R1B
=

0− Vout

R2
(2.6)

or,

Vout = −

(
R2

R1A
Vin_A +

R2

R1B
Vin_B

)
(2.7)

Subtraction is a bit like addition.Wewill not give an explicit descrip-
tion of a circuit that subtracts. It is left as an exercise (see Section 2.7).

Before we continue, let us pause and take in the meaning of the
summer. I would submit that there is more here thanmeets the eye.
You see, the total effect of two inputs is the same as the sum of their
individual effects. If we built two separate circuits and input the volt-
ages, thenmeasured the outputs, we would find that the sum of the
outputs of these individual circuits would be just the same as what
we see with the summer amplifier. Sum of causes result in the sum of
effects.This is known as “superposition”. It is a rather general property
of linear systems, somuch so that, wemay be inclined to define a linear
system as one where superposition holds true.
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2.4 integration

So far we used resistors in our circuits. When there is no hysteresis,
the output voltage will always be determined by the input voltages. In
otherwords,with only resistors, the current-voltage relationship is not
time-dependent.We developed a nice formal approach to analyzing
these circuits.The sameprinciples andgolden rulesmust holdwhenwe
consider time-dependent current-voltage relations.The circuit below
is known as an integrator.

Figure 2.4: Integrator.

Once again, the same logical steps given for Figure 2.1 apply. We
recognize that currentflows into the inverting input through resistorR,
while this current flows out throughC.The current through a capacitor
is a function of the voltage across the capacitor. LetVc(t)be the voltage
across the capacitor, and similarly, let ic(t) be the current that flows
through the capacitor. We know that,

i(t) = C
dV(t)

dt
(2.8)

Similar to the argument for Equation 2.1, we have,

Vin(t)−0
R = C

d(0− Vout(t))

dt

Vin(t)
RC = −

dVout(t)

dt

Vout(t) = −
1

RC

∫t
0

Vin(τ)dτ

(2.9)
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2.4 integration

Let us make a few observations. First, if Vin(t) remains non-zero
for a sufficiently long time, the integrator output will reach the supply
voltages and the opampwill saturate.The integrator is thusmeaningful
when we have AC signals of suitably high frequency. Next, let us dwell
a bit on the units. Studying the units is rather useful in developing
engineering intuition.

The left-hand-side of the integral equation in Equation 2.9 has units
Voltage, denoted by [V]. We follow the convention from dimensional

analysis and use square brackets to denote the units.The integral on
the right-hand-side has units [V][T], where [T] is the unit of time.The
constant RCmust therefore have units [T].This is indeed the case.The
term RC is referred to as the time constant. It pops up quite frequently
in electronics. You also see a trade-off between R andC. If you want a
certain time-constant value, youmay implement it by selecting various
values of each, as long as their product is what you want. Typically,
small capacitors and large resistors are used, since large capacitors
may become bulky and age faster over the life of the product.

The best way to gain insights and sharpen your intuitionwould be to
build the circuits and experiment with them. Once again, the worthy
but not quite as powerful substitute to actually building the circuits
would be to simulate. If you cannot build, at least simulate.

The circuit (Figure 2.5) was simulated in QUCS.

Figure 2.5: Integrator Simulation.
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2.5 differentiation

The integrator is built with a 1µF capacitor and a 20k resistor, which
gives a time constant of 0.02 seconds. The excitation comes from a
pulse generator with amplitude 1V. It switches on at time 0.1 seconds,
and switches off at 0.2 seconds. The pulse is 0.1 seconds long. The
simulation runs give the expected output (Figure 2.6).

Figure 2.6: Integrator Simulation Output.

Note that the capacitor was charged at 8V at the beginning of the
simulation.The output remains at 8V until the pulse is triggered at
time 0.1 seconds. For the next 0.1 seconds, the pulse remains high.The
output has a linear response, albeit with a negative slope.The negative
slope is because the positive pulse is applied to the inverting input
of the opamp. Now, the reciprocal of the time constant is 50, and the
integral of the signal is 0.1 (1V for 0.1 seconds).Thus the integral value
is 5V. This is what the graph shows.The voltage drops from 8V to 3V.

2.5 differentiation

Since integration seems quite possible, somust its opposite operation,
differentiation. Indeed, switching the locations of the resistor and the
capacitor would accomplish this (Figure 2.7).

The analysis follows the same logic.
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2.6 superposition

Figure 2.7: Differentiator.

C
d(Vin(t) − 0)

dt
=

(0− Vout(t))

R

dVin(t)

dt
= −

Vout(t)

RC

Vout(t) = −RC
dVin(t)

dt

(2.10)

2.6 superposition

So far we used resistors in our circuits. When there is no hysteresis,
the output voltage will always be determined by the

2.7 experimentation and reflection

1. Suppose we want to construct a non-inverting amplifier with
gain 100 by cascading two inverting amplifiers as shown in Fig-
ure 2.1.While the product of the gainsmust be 100, this product
may be split up in many different ways. For example,−100 and
−1, or−10 and−10, or−1 and−100, etc. What would be your
preference?Why? Discuss the pros and cons of each alternative.

2. How can the summer circuit Figure 2.3 be generalized to accom-
modate an unspecified number of inputs?

3. How can the summer circuit Figure 2.3 be generalized to subtract
one signal from the other?
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2.7 experimentation and reflection

4. Is the integrator circuit stable?That is, will it settle to a known
and desirable state when left alone with no input? How about
the differentiator circuit?

5. Design and investigate the pros and cons of an integrator with a
non-inverting configuration.

6. Design and investigate the pros and cons of a integrators using
inductors, rather than capacitors.

7. Do the units in Equation 2.10 match up?
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3
ANALOG COMPUTERS

Now that we have the means to amplify, add, subtract, integrate, and
differentiate signals, what practical things can we do with opamps?
Surprisingly, a lot. And there is quite a lot of history behind this. In
fact, I was first introduced to opamps as an ambitious lad in my early
20s with analog computers. I vividly remember using the PACE-TR-10
and thinking it was the greatest thing ever. A few years later, when I
started graduate school in 1978, the department had a course on analog
computers, taught by Professor P. E. Valisalo. He was quite passionate
about the topic and had many ideas [8]. As students, we were fairly
saddened by theway hewas treated by the newer, young and ambitious
professors who insisted that the digital computer was the only way
to go. Maybe that has something to do with why nowadays only a few
people appreciate – or even understand – differential equations.

Figure 3.1: The PACE-TR-10 Analog Computer.

An analog computer is a device that uses signals, typically voltage,
to represent time-varying physical quantities. You can implement and
“solve” differential equations with analog computers. I say “solve” be-
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3.1 an example

cause youessentially observe the resultantwaveformonanoscilloscope.
Fancy ones let us plot these waveforms as well.

3.1 an example

Perhaps it is best to illustrate the idea of analog computation with an
example. Everyone knows how a little mass, saym suspended from a
rubber band will bounce up and down when stretched and let go. Let
us measure the distance of the mass from its resting point as variable
x. Since the position, once disturbed, changes, we are interested in
the time-dependent value of distance, which we will denote as x(t).
Now, comes the critical concept: let us construct a circuit, where the
voltage at a certain node mimics the same time-varying response. In
fact, I will also call this voltage x(t).

Now recall some high school physics.The force on the rubber band

due to the movement of the mass ism
d2x(t)

dt2
. The force excreted by

the rubber band is proportional to its displacement from equilibrium.
That is kx(t), where k is the so-called spring constant. In addition, there
are frictional forces, such as air resistance or internal friction within
the rubber band.These forces are proportional to the velocity of the

mass, f
dx(t)

dt
. And finally, we have the ever-so-present gravitational

forcemg. Putting it all together, we have the equation,

m
d2x(t)

dt2
+ f

dx(t)

dt
+ kx(t) = mg (3.1)

This is a second-order non-homogeneous linear differential equation.
Normalizing (dividing) by the mass, we have,

d2x(t)

dt2
+

f

m

dx(t)

dt
+

k

m
x(t) = g (3.2)

Since this is a second-order differential equation, we will need two
initial conditions to find a specific solution. Considering that at the
beginning we will stretch the rubber band and let go, wemay specify
an initial position, say x0, and assume that the initial velocity is zero.
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3.1 an example

x(0) = x0

dx(t)

dt

∣∣∣∣∣
t=0

= 0

(3.3)

As stated at the outset, we will represent x(t)with a voltage. Consider
the circuit given in Figure 3.2.

Figure 3.2: An Analog Computer Circuit.

The circuit seems a bit busy, consisting of six opamps, used as sum-
mers, amplifiers, and integrators.The component values are not ex-
plicitly given.The circuit is this more of a demonstration of concept.
Let us follow the signals around the circuit and see how it implements
the bouncingmass suspended from the rubber band. You will notice
that there is a circular topology to the design, a bit like the ouroboros.

TheOuroborosSo, wemay start at any point around the circuit and trace the signals.
Let us, though, start with opamp U1.We re-arrange the differential
equation, so that the second derivative term is expressed as a linear
combination of the variable, its first derivative, and a constant.

d2x(t)

dt2
= −

f

m

dx(t)

dt
−

k

m
x(t) + g (3.4)

The implication is that we need not explicitly model the second
derivative term, but be happy that we can combine other ingredients
to express its value.The opampU1 is used to add three different signals.
These are the constant gwhich is input to the circuit, the negative of
the first derivative term, and the negative of the term that includes
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3.1 an example

the variable x(t) itself. The two latter terms are to be multiplied by

constants, the
f

m
and the

k

m
, beforebeingadded.Thesemultiplications

are done by U5 and U6, respectively. The output of U1 is inverted by
U2. The output of U2 thus constructs the second derivative, the left
hand side of (Equation 3.4), by combining the individual terms on the
right hand side of that equation.This signal is fed to integrator U3 to
produce the first derivative of the signal x(t). Since the integrator also

inverts the signal, it is actually−
dx(t)

dt
. You would see that this is one

of the signal taps, feeding U5. U5 acts as an amplifier, whose output

becomes −
f

m

dx(t)

dt
, ready to be fed into the summer U1. We have

completed one of the loops in the circuit. Opamp U4 integrates the
signal, the first derivative of x(t). The output of U4 is what we would
observe, either on a scope or on a plotter. The voltage swings at the
output of U4 will be the same as the swings in position of the original

mass and rubber band system.The output of U4 is multiplied by−
k

m
by U6.This signal is the other input to the summer.

Once the circuit is set up, you may start the process by charging
one of the capacitors, say the one in the feedback loop of U4. Then,
observe the output of U4 to see how the system evolves. The various
parameters, namelym, f, and k are to be determined by the values of
the resistors at each of the amplification opamps.

Figure 3.3: Analog Computer Output.

It is best to actually build the circuit and see how it behaves. If you
simulate, you gain some insights, but lose the real engineering touch.
The simulator output (Figure 3.3) shows the response.The horizontal
axis is time in seconds.The vertical axis is position. Positive positions
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3.2 industrial control

are in the direction of g, that is, downward (yes, strangely, up is down
here). The blue line is the output voltage x(t) corresponding to the
position of the mass.The red line is the excitation. I chose to pulse the
input g. That is, the mass is under gravitational force for a one second,
and then the gravitational force is removed. I know, in reality, it is not
easy to turn the gravitational force on and off. I suppose you could
consider this to be a model of a piece of iron suspended by a rubber
band over an electromagnet.Then you could turn the electromagnet on
and off to make the mass bounce up and down.The analog computer
correctly duplicates what happens to the mass.The position oscillates,
but dampens over time to settle to an equilibrium state. When the
gravitational force is removed, again after dampened oscillations, the
position settles at zero.

There was a time when analog computers were used extensively
to study the dynamics of systems, especially in the aviation industry.
Nowadays, simulations are almost exclusively done on digital comput-
ers. But one cannot deny that building an analog computer circuit to
mimic and simulate a dynamical system governed by differential equa-
tions has a place in engineering. If nothing else, it serves to elevate
engineering intuition.

3.2 industrial control

It would be misleading to think that analog computers were the only
place where opamps shone. Along with analog computers, much in-
dustrial control was accomplished by things that resemble analog com-
puters, again constructed using opamp building blocks. A significant
portion of such control falls under what is known as PID control. The
term derives from the words proportional, integral, and derivative.

The idea is to express the processwhich is to be controlled by a signal,
and continuously compare it against a reference signal. The reference
signal may be time-dependent. A good example of time-varying ref-
erence voltage is a servomotor that needs to track some trajectory.
The voltage fed to a servomotor is to be varied, under different load
conditions, while the speed of the servomotor is to follow a certain
profile. A tachometer placed at the same shaftwould generate a voltage
proportional to speed.The supply voltage then can be automatically
adjusted so that the speed read by the tachometer voltage follows a
reference voltage.The approach is to find the error signal, that is, the
difference between the desired and the actual. Here the desired comes
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3.3 experimentation and reflection

from the outside, and the actual comes from the tachometer. A set of
opamp-built circuits are used to generate the output voltage based on

the error signal ϵ(t), its derivative
dϵ(t)

dt
, and its integral

∫t
0

ϵ(τ)dτ.

In many applications, the derivative part of the control signal would
not be used and only the proportional and integral components would
comprise the control signal.

Analog PID control has been the workhorse of industrial control
since the early part of the 20th Century.The PID controller was best
suitable for continuous processes, such as in petrochemical industries.
It is not surprising that the main ideas and development came from
chemical engineering. Discrete control at that period was left to pro-
grammable logic controllers, usually comprising arrays of relays. As
we closed the 20th Century, we see that both approaches have given
way to the digital controllers, starting with the mid-century computer
numerical control (CNC) machines.

3.3 experimentation and reflection

1. Start at various points in circuit in Figure 3.2 and follow the sig-
nals, verifying that the circuit indeed simulates the mechanical
system.

2. Study the circuit in Figure 3.2 and assign values to the resistors
and capacitors.

3. Build or simulate the circuit in Figure 3.2. Examine if the circuit
behaves as expected.

4. There are interesting things you can do with the analog com-
puter that you cannot in the physics lab with real masses and
springs. Suppose mass were negative.That is when you acceler- Such thought

experiments,

predictions, and

testing by a

model help

cultivate

engineering

intuition.

ate amass, suppose instead of resisting the acceleration, it aided
the acceleration– some sort of negative inertia.Howwould such
a mass suspended from a rubber band behave? First predict its
behavior, and thenmodify the circuit to simulate its behavior.
Was your prediction correct? Repeat the thought experiment
with negative friction, and then see if your predictions were
correct.

5. Pick a few differential equations from yourmathematics text-
books and construct circuits that would simulate the dynamics
defined by the equations.
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3.3 experimentation and reflection

6. Pick a few differential equations from yourmathematics text-
books and construct circuits that would simulate the dynamics
defined by the equations.

7. Is it possible to construct circuits that would implement non-
linear differential equations? If so, give an example.
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Part III

S IGNAL PROCESS ING

Simple signal processing. Simple filters.Watch out – sim-
ple things tend to get out of hand quite easily.

Fairchild Linear Integrated Circuits
µA 709 High-Performance Operational Amplifier, 1965



4
FREQUENCY AND GA IN

In typical electrical engineering classes, the topic sooner or later comes
to frequency-domaincontent. Youcover frequencyandphase responses,
and the likes. I often chose to frame the topics around audio signals.
Of course, the insights andmethodologies will apply to all AC signals,
such as telecommunications applications. Typical applications involve
oscillators, filters, modulation, decoding, detection, waveform shap-
ing, etc. Our purpose here is not to present a complete treatise of AC
signal processing, but rather illustrate how opamps may be used to
accomplish some of these functions.

4.1 the key insight

Engineering intuition says that if you put a sinusoidal signal through
an opamp running in some linear mode, its frequency should be pre-
served.We know that the voltage-current relations of capacitors and
inductors involve differentiation or integration.The derivative of a si-
nusoidal function still looks sinusoidal. After all the derivative of sin()
is cos(), and this may even be thought of shifted sin(). In technical
parlance, this shift is referred to as a phase difference. Referring back to
the integrator, let us experiment with various parameters and see how
the output of the integrator differs from the input. Since both the input
and the output are sinusoidal, the difference is in their amplitude and
their phase. Recall the basic integrator was given in Section 2.4.

Figure 4.1: Integrator.
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4.1 the key insight

If you try different values for R and C, youwill notice that the output
amplitude is inversely proportional to both R and C. The integrator
looks much like the inverting amplifier, except that the feedback re-
sistor R2 is replaced by the capacitorC. The inverting amplifier had a

gain of
R2

R
. The gain here is also inversely proportional to R (R1 in the

amplifier circuit). However, here, the gain is inversely proportional to
the (feedback) capacitor. Using the integrator Figure 4.1, with an input
of 1V AC, it is clearly visible from Figure 4.2 that as the capacitance
doubles, the output amplitude is halved. Note also that sometimes the
circuit amplifies the input1V AC signal,while sometimes it attenuates.
Of course, the gain depends on the inverse of the time constant.

(a) C = 1µF (b) C = 2µF

(c) C = 4µF (d) C = 8µF

Figure 4.2:The Effect of Capacitance on Gain.
The output of the integrator (Figure 4.1) when the input is a 1V AC signal.

Thismakes sense, since the larger the capacitor, the easier it allows
AC current to flow, or in other words, the less “resistance” to AC signals.
When it comes to AC we rather use the word impedance. This explains
the termwhich we identified as the “time constant” RC.The gain of an
integrator is inversely proportional to RC, as developed in Section 2.4.
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4.1 the key insight

Vout(t) = −
1

RC

∫t
0

Vin(τ)dτ (4.1)

Let us now dwell on the concept of impedance and the implications
of signal frequency. Whereas for resistors, for which the resistance is
independent of the type of signal, for capacitors, this is not the case.
The degree to which a capacitor impedes current depends on the type
of signal. Clearly, if there is a DC charge on the capacitor, no current
flows. At the other extreme, fast changing signals flow through easier
than slow changing ones. Current is often likened to water flowing
through a pipe.The so-called hydraulicmodel is rather rudimentary, and
at timesmisleading, but here wemaymake use of it. A capacitor is like
adiaphragmplaced in thepipe, blockingflow.However, thediaphragm
gives a little under pressure. So any vibrations in the water, say sound,
will “pass through”. A large capacitor is like a flexible diaphragm, while
a small capacitor is like a stiff diaphragm.

(a) f = 4Hz (b) f = 8Hz

(c) f = 16Hz (d) f = 32Hz

Figure 4.3: The Effect of Frequency on Gain.
The output of the integrator (Figure 4.1) when the input is a 1V AC signal.

Experimentation builds insights which make the theory obvious.
Again, Figure 4.3 shows that the output amplitude is halved each time
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4.1 the key insight

the frequency is doubled. Once you have a feel that higher frequency
will face less impedance through a capacitor, and that the gain will
thus be lower, we may review Equation 4.1 and proceed in a formal
manner. First, let us express the input signal as a sinusoidal function
of time.That is, let us express the voltage at the input as a function of
time as, Vin(t) = A cos(ωt). HereA is the amplitude, andω deter-
mines the frequency. We view the argument of cos() as an angle.This
is just customary jargon from trigonometry, not reallymuch to dowith
electrons. The cos() function is a periodic function. For any integer
k, cos(x) = cos(x+ k2π). At timeωt = 2π, the cos() function com-
pletes its cycle and starts over.The length of time it takes to complete

a cycle is called the period of the signal. It takes t =
2π

ω
time units for

each period of the sin() function.The frequency f is the reciprocal of
the period, that is, how many cycles per time unit we have. We say,

f =
ω

2π
but more often you see it written asω = 2πf.

Now that we have a formal description of Vin wemay carry out the
integration in Equation 4.1.

Vout(t) = −
1

RC

∫t
0

A cos(2πfτ)dτ

Vout(t) = −
A

2πfRC
sin(2πft)

(4.2)

Since we described the Vin as a cos() function, let us also write Vout

as a cos() function. Usingω = 2πf reduces clutter, so let us also throw
that into the equation.This all is summarized as, when the input is,

Vin(t) = A cos(ωt) (4.3)

the output becomes,

Vout(t) = −
A

ωRC
cos(ωt−

π

2
) (4.4)

It is not surprising that the amplitudeA retains its place in the out-
put.This is quite intuitive. All things being the same, an input twice the
amplitude should indeed generate an output twice themagnitude.Our
observations that the gain of the integrator is inversely proportional
to both R and C (or the time constant) is also visible from the equa-
tions. Moreover, the effect of signal frequency, as we had observed,
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4.1 the key insight

is clearly visible in the equations. It appears that the gain is inversely
proportional to the frequency as well.

There is one final observation. We see that the output lags the input

by
π

2
radians. Besides themathematical development, there are several

insights that lead us to this very observation. Perhaps the easiest way
to see this phenomenon of lag is to study the waveforms.

Figure 4.4: Integrator Lag.
The input of the integrator (Figure 4.1)
is shown in blue, and the output, in red.

Here the input Vin is in blue and the output Vout is in red. The
input has a frequency of 5Hz. Five cycles of the signal is shown, which
spans 1 second. Integrating the input (blue) signal, starting at t = 0,
the integral monotonically increases until t = 0.1. This is the half
(upper lobe) of the sinusoidal waveform. At t = 0.1,ω = π. So, the
peak of the integral is reached when the input completes half a cycle.
Note that, due to the use of the inverting input, the integral has the
opposite sign. So, the output (red) line actually reaches its lowest point
at t = 0.1. During the second half of the cycle, the input is negative. So
the integral is now reduced, until the cycle completes at t = 0.2. Since
the upper lobe of the input that adds to the integral, and the lower
lobe that subtracts, are identical other than their sign, the integral at
the completion of the cycle at t = 0.2 is once again zero.We observe
this as the output (the red line) is once again at voltage zero at t = 0.2.
Clearly, this relationship leads to a lag of a quarter cycle, and hence

the
π

2
in the argument in Equation 4.4.
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4.2 integrator as a low-pass filter

4.2 integrator as a low-pass filter

Since thegainof the integrator is inversely proportional to frequency, it
may already be used as a low-pass filter. Plotting the gain as a function
of frequency sounds like a sensible way to proceed and gain some
insights.The integrator circuit (4.1) was built with a 10k resistor and
a 1µF capacitor. The input is a 1Volt sinusoidal signal (the blue line),
this way, the amplitude of the output is also the gain of the circuits.
We vary the frequency from 10Hz to 1kHz and plot the amplitude of
the output (the red line) in Figure 4.5. We may plot using linear or
logarithmic coordinates.The figure presents all possible combinations.
Which one is easier to read?

(a) linear-linear (b) logarithmic-linear

(c) linear-logarithmic (d) logarithmic-logarithmic

Figure 4.5: The Effect of Frequency on Gain.

Most would say the logarithmic-logarithmic (in engineering, re-
ferred as log-log) graph is the easiest to read.Why is the log-log graph a
straight line?Well, we had seen (Equation 4.4) that the gain is inversely
proportional to the frequency.That is, when frequency doubles, gain
is halved, and so on.When youmultiply by a factor, you increase its
logarithm by the logarithm of that factor.The logarithm of its gain will
thendecrease by the logarithmof the factor. Simply put,multiplication
and division appears as addition and subtraction on a log-log graph.
The straight line on the log-log graphmeans that the relationship is a
purely reciprocal one.
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4.3 decibel – a bit of history

4.3 decibel – a bit of history

All this is fine and dandy, but you usually see gain defined in a unit
called decibel abbreviated as dB. And you see things written like “20
dB/decade”. Sometimes it is “per octave”. What does all that mean?

The history of decibel is indeed an interesting one. It all starts with
the new invention of the telephone. As the Bell Telephone Company
started connecting customers in the late 19th Century, signal loss over
their standard wire became an important engineering consideration.
The original unit used was the “Miles of Standard Cable” abbreviated as
MSC. It is the power loss along onemile of the standard double-strand
cable (called a loop cable) at approximately 800 Hz (5000 radians per
second, to be exact). So, we must be careful to recognize that MSC
is a power loss unit, not really a unit that describes the amount of
cable.The standard was chosen so that a 1 MSC of power loss is barely
detectable by the human ear.

Here is how I envision what company engineers were facing way
back when.

– management: Don’t over-design it! Keep costs down, you hear?

– engineers: Look, if we skimp on the cable, there will be some
power loss.

– management: Meaning?

– engineers: People will not hear each other clearly.

– management: We don’t want that, do we now?Make it so there
is no loss.

– engineers: There is no such thing as no loss. The heavier the
cable the less the loss.

– management: Does “heavier cable” mean “more expensive”?

– engineers: Duh! It is copper. Heavier means more copper.

– management: So, what do we need for a reasonable set-up?

– engineers: Look, the human ear can detect a reduction of such
and such.We need to keep under that if you want good sound
quality.

– management: Good, make it so. It wasn’t that difficult now, was
it?

– engineers: Well, if you want the loss to be at the human detec-
tion threshold, and you want to connect from coast to coast, you
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4.3 decibel – a bit of history

will need a cable fatter than a swamp possumwith the mumps.
Will cost you.

– management: It doesn’t need to be coast to coast, don’t exagger-
ate.

– engineers: How far do you want the line to reach?

– management: A mile?That’s good. Isn’t it?

– engineers: You fellows are the boss. What do we know?

– management: Sure, a mile. We call that local calls. It will be the
default. If theywant anything further,wewill call it “long-distance
calls” and charge them an arm and a leg. Geez wemanagers are
smart!

– engineers: OK. Got it. We design the cable so that over a mile
the power loss will be barely detectable.

– management: Good.We use that cable. What is it called, by the
way?

– engineers: Uuumm, well, actually... it is known as the “Stan-
dard Cable”. Yes, that’s it – good old standard cable.That’s what
you want.

– management: Wait wait. What happens if we hang a line two
miles long?

– engineers: Well, that would be 2 em-see-ess, won’t it?

– management: What is emm-see-ess?

– engineers: It is MCS,miles of standard cable. 2MCS, twice the
power loss. 3 MCS, thrice...

– management: ...and 4 miles, 4 MCS, right?

– engineers: Riiight. You fellows are sure smart.

The cable thatwould yield this power loss, as Bell engineers designed
it, inmodern engineering terms, has 88Ohms of resistance and 54nF
of shunt capacitance per mile. Note the logarithmic nature of the unit
MSC: eachmile adds oneMSC of attenuation. For instance, if you have
2miles of cable, thefirstmile has an attenuation– thepower is reduced
by a factor.The secondmile also reduces the power by the same ratio,
so it becomes the multiplication of ratios. But the “miles” are added.
Sounds logarithmic, does it not?

We should pause here and take note of another aspect: the telephone
engineer was interested in measuring gain (and loss) of power, not
voltage.The graphs we plotted so far (e.g. Figure 4.5) are all in terms
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4.3 decibel – a bit of history

of voltage gain.The sound level is related to power not voltage. Luckily,
we know that power is proportional to the square of voltage. So, we
could describe gain in terms of power, not voltage, quite easily. This is
a trivial task if we use log-log graphs. Since power is proportional to
the square of the voltage, all we need to do is to multiply the logarithm
of voltage by 2.The log-log graph in 4.5 would still be linear, but with
double the slope if the vertical axis is power rather than voltage.This
is yet another advantage of using log-log graphs.

As timewent onand telephone connections started connecting coun-
tries across national borders, an international standard was sought.
The effort yielded what was known as the TransmissionUnit or TU.Here
is how they defined the TU: take the ratio of the output power to the
input power. This ratio will be less than 1 for cables, meaning there
is a loss of power. Take the logarithm of this ratio. When there is a
power loss, the logarithmwill be negative. Positive logarithmsmean
a gain in power. If the logarithm is zero, then there is no loss or gain
(often called “unit gain”). Due to the capacitance of the cable, the higher
the frequency, the greater the loss.The frequency at which the gain is
unity is called the cut-off frequency. We can compute easily the cut-off
frequency of our integrator from Equation 4.4 as

fcutoff =
1

2πRC
(4.5)

Now, the TU is defined to be such that it takes 10 TUs to change the
logarithm by 1.The TU is very close to the MSC. Bell renamed the TU
as a decibel.The “deci” comes from the 10, and the “bel” comes from the
name of the inventor Alexander Graham Bell.

This unit of measurement always sounded to memore like a craft
definition, rather than an engineering definition. In modern terms,
here is how I see it. First, decibel measures a ratio, not an absolute
quantity.The ratio of output to input in an opamp circuit, for example,
may be measured in decibels. But youmay use decibels for any ratio,
not just things electrical. You probably have heard of sound volume
expressed in decibels. N decibels corresponds to a ratio of 10N/10. If
you like, 10 decibels, or “a bel”, corresponds to a ratio of 10. I tend to
think of that 10 decibels is an order of magnitude. So, to me, a decibel
is like a tenth of an order of magnitude, logarithmically speaking, of
course.Multiply 10 of these decibels and you get an order ofmagnitude.
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4.4 revisiting the integrator as a low-pass filter

4.4 revisiting the integrator as a low-pass filter

Now, looking at the response graph (Figure 4.5), we see that for low
frequencies, there is gain, at a certain frequency, the gain is one, and
then the gain drops, as there is a loss in voltage. The log-log graph
is good, because it allows us to work with straight lines. The filter
response is a straight line on the log-log graph means, double the
frequency, half the gain, also as seen fromEquation 4.4. So far so good.
But...

Why do engineers simply not say “double the frequency, half the
gain”, but instead say things like “-6dB per octave” when referring to
these graphs.Well, when it comes to frequency, “double the frequency”
has a deeply rooted tradition frommusic. It is called an octave.This,
however, does not carry over to other ratios – here the ratio of the
output voltage to the input voltage.The latter, as we saw, is measured
in ten steps to an order of magnitude. Perhaps it is also a source of
confusion that an order of magnitude is also 10.The 10 steps and the
order of magnitude are somehow related by nature, but not by physics.
Let me explain. .There is no reason wemust divide the order of mag- Although in early

computer days

the Latin term

sexagesimal
was used, it was

renamed as

hexadecimal by
IBM, who

preferred the

abbreviation hex
over the

alternative.

nitude into 10 steps. On a guitar, the octave is divided into 12 frets,
and we are fine with that. The quantity 10 pops up all over the place
because we count in tens, because we have ten fingers. If we had eight,
our order ofmagnitudewouldmost likely be eight, andwewouldmost
likely be using an octal numbering system. Better if we had 16 fingers.
Then computer engineers would be right at home using hexadecimal
numbers.

So, although we have a log-log graph, and we count ratios of fre-
quencies on the horizontal axis and ratios of frequencies on the vertical
axis, we use octaves for frequency and decibels for voltage. Could it
have been easier – I suppose so. But as you see, there is quite a bit of
history behind the use of terminology for each of the axis.

So, what is the slope of the log-log graph? Well, half voltage for
double the frequency, or half the voltage per octave, or log(0.5) =
−0.3010299957 bels per octave, or 10log(0.5) = −3.010299957 deci-
bels per octave. If you think it is over, well, no. As Yogi Berra said, “it
isn’t over until it’s over”. First, it is usually written that the slope of the
log-log response graph of the low-pass filter is -3dB per octave, not
-3.0103 dB.This is a close approximation within three parts in a thou-
sand. Next, in some context, you see that it is -6dB per octave. This
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4.5 a practical low-pass filter

is also correct.The -3dB refers to the voltage gain, whereas the -6dB,
with double the slope, refers to the power gain.

Finally, we have come to the end of out story.The integrator opamp
(Figure 2.4) has a power gain of -6dB per octave. Double the frequency,
and you get a -6dB power gain (or a 6dB power loss). If you do not favor
expressing the horizontal axis in octaves, there is another common
convention.Whereas the octave refers to doubling the frequency, the
term decade is used to describe a ten-fold increase in frequency. So, the
voltage gain here would be -10dB/decade,or equivalently, the power
gain would be -20dB/decade.

It is common that this filter will be referred to as a first-order low-pass
filter, since it contains only one capacitor, and hence, the input-output
characteristics of the filter is described by a first-order differential
equation.

4.5 a practical low-pass filter

In typical applications, the basic circuit (4.4) is modified as given in
Figure 4.6. Let us motivate the idea behind the feedback resistor R2.
When the signal frequency is lower than the cut-off frequency, the
capacitor will have a high enough impedance that the circuit behavior
will be determinedmostly by R2. Here R1 and R2 form a plain old in-

verting amplifier with a gain of
R2

R1
.When the frequency is higher than

the cut-off frequency, the path of less resistance is through the capacitor,
and thus, high frequency signals are attenuated.The net effect of the
feedback resistor can easily be depicted from the frequency response
of the circuit.

Figure 4.6: Low-Pass Filter.
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4.6 active versus passive filters

Let us pick some component values. Let us set the cut-off frequency
to 1kHz, and a low frequency gain of 2. Now we can compute R1, for If you are

comfortable with

a 15k resistor to

be close enough,
congratulations.

You sure have

some engineering

pragmatism.

a capacitor of, say, 10nF. The gain is 1 at the cut-off frequency, so
2π 1000 R1 10−8 = 1. This gives us R1 = 15916Ohm. We pick a
standard 15k resistor from our parts box as a good approximation.

At low frequencies, the gain is 2, so
R2

1k
= 2. A standard 33k resistor

would work nicely enough. If you are going to be an engineer, I guess
you have to learn not to nitpick.

Figure 4.7: Low-Pass Filter Frequency Response.

Looking at the graph (4.7) we see that the gain at 1 kHz is just a bit
below unity.This is what we aimed for.The gain starts at a little over
2 (10% over to be exact.The gain is 33

15 ). That too is according to plan.
The gain indeed drops 10 dB/decade as it is set by the nature of the
first-order filter. At 1 kHz, the gain is 1, while at 10kHz, it is 0.1.

4.6 active versus passive filters

Here is a legitimate question we did not address: why can we not use
a simple resistor-capacitor filter?The answer is that such a filter will
always have a gain less than 1.Only activefiltersmayhave a gain greater
than 1. What if we fed the output of the passive filter to an opamp
amplifier, would that not work. Well, in theory it would. But it is best
to prevent signal loss asmuch as possible.The active filter built around
the opamp uses the capacitor-resistor combination as an integral part
of its operation. Whereas a resistor-capacitor filter would cause a loss
in signal power. Another way to see this is that the input impedance of
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4.7 experimentation and reflection

the active filter is many orders of magnitude greater than the resistor-
capacitor filter. The difference becomes important as you start dealing
with noise, especially when dealing with delicate signals that have very
little power.Would you rather feed the signal from a radio-telescope
to a resistor-capacitor network, or an active filter?

4.7 experimentation and reflection

1. Build the circuits in this chapter and verify the observations
made here.

2. Use an audio source, cascade several low-pass filters and see
what the output sounds like. How does the sound change as you
keep adding filter stages?

3. How would you build an active high-pass filter? Give several
approaches. Guess what the advantages and disadvantages of
each approach would be.
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5
HIGHER-ORDER F I LTERS

5.1 not steep enough?

An ideal low-pass filter should be all-or-nothing. It should have con-
stant gain until some frequency, and then have no output whatsoever.
A −6dB per octave filter may sound far from ideal to a purist. The
fact is, it really depends on the application. However, there is a simple
way you could push your low-pass closer to the ideal. Just cascade two
filters, one after the other. Remember the MSC? If you put one−6dB

filter after the other, you should get a−12dB/octave filter, right? Benjamin

Brewster wrote in

The Yale
Literary
Magazine of
February 1882: “I

heard nomore,

for I was lost in

self-reproach that

I had been the

victim of "vulgar

error." But

afterwards, a

kind of haunting

doubt came over

me.What does

his lucid

explanation

amount to but

this, that in

theory there is no

difference

between theory

and practice,

while in practice

there is?”

Using the same values as in the previous section (4.5) we once again
run the circuit and observe its frequency response. It is best to do this
in the lab using real opamps.The next best thing is to simulate it.

But wait a minute. The low-frequency gain in Figure 4.6 was set
to 2, and we even had a 10% extra from not using the exact resistor
values. If we cascade two identical stages, would we not get a gain of
4+? Yes, indeed. So, what to do?Well, looking at Figure 4.6, we should
not changeR1, becauseR1 andC determine the cut-off frequency.We
may change R2. Let us leave one of the stages exactly as before with
R2 = 33k, but make R2 = 15k at the other stage.That way, the gain
at low frequencies would be unity. The gain at low frequency of the
tandem filters would be set by one stage, and the other would have
unit gain.

Sounds fair. Let us try.

Looking at the graph (Figure 5.1), we see that low-frequency gain is
kept around 2 as desired.The gain now drops 20 dB/decade. At 1 kHz,
the gain is 1, while at 10kHz, it is 0.01.

5.2 cookbook recipes

Many times seasoned engineers would resort to a few cookbook config-
urations.These are the bread and butter of electronics professionals.
They are tried and tested configurations handed down from genera-
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5.2 cookbook recipes

Figure 5.1: Low-Pass Filter Frequency Response of Two Cascaded Filters.
(Based on the circuit given in Figure 4.6)

tions – the anonymous folk songs andmythologies of filters past. You
must have these in your repertoire if youwant to be recognized by your
fellow craftspersons.

Here iswhatmostwould dowhen asked for a second-order low-pass
filter (Figure 5.2).

Figure 5.2: Second-Order Low-Pass Filter.

Strictly speaking, the two resistors and the two capacitors thatmake
up the filter need not be identical. Making them identical however
simplifies the computations. In production, it reduces assembly errors
and streamlines inventory keeping. It may also give you a sense of
balance.Thefilter has a low-frequency gain of 2. Its frequency response
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5.2 cookbook recipes

shows the characteristic -20dB/decade (-6dB/octave) gain after the
cut-off frequency of 1kHz.

Figure 5.3: Second-Order Low-Pass Filter Frequency Response.
(Circuit given in Figure 5.2)

If you want to make a high-pass filter, youmay start with the circuit
given in Figure 5.2 and simply exchange the places of the resistors
and the capacitors, as depicted in Figure 5.4.There seems to be some
symmetry. If this appeals to your sense of beauty, once again, congrat-
ulations, you have the makings of a good engineer.

Figure 5.4: Second-Order High-Pass Filter.
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5.3 band-pass and band-reject filters

The filter has a high-frequency gain of 2. Its frequency response
shows the characteristic -20dB/decade (-6dB/octave) gain before the
cut-off frequency of 1kHz.

Figure 5.5: Second-Order High-Pass Filter Frequency Response.
(Circuit given in Figure 5.4)

5.3 band-pass and band-reject filters

Now thatwe have theworkings of filters, wemay cascade them to allow
or reject a band of frequencies. In the case of band-pass, first place a
high-pass filter with a cut-off frequency Flo equal to the lower limit
of the band. Its output would be the frequencies above Flo. Now, if
we feed this output to a low-pass filter whose cut-off frequency Fhi is
set to the upper end of the band, all frequencies above Fhi will also be
attenuated.What is left are the frequencies in the range Flo to Fhi.

Figure 5.6: Band-Pass Filter.
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5.3 band-pass and band-reject filters

Youmay have noticed that we changed the capacitor values of the
second (downstream)filter in Figure 5.6 from10nF to1nF.This pushes
the cut-off frequency of the low-pass filter to 10kHz. This way, the
filter passes frequencies in the band 1kHz to 10kHz. The frequency
response (5.7) is as expected – with -20dB/decade (-6dB/octave) slopes
around a band from 1kHz to 10kHz.

Figure 5.7: Band-Pass Filter Frequency Response.
(Circuit given in Figure 5.6)

Now, suppose we wanted the opposite – to reject a band of frequen-
cies and allow all frequencies below or above a band.This is called a
band-reject filter. In this case we cannot simply cascade low-pass and
high-passfilters.Whynot?Well, because there is no frequency thatwill
pass through both filters. So, a serial arrangement is not the solution.
What we can do is depicted in Figure 5.8.

We take the input to parallel filters, and then once again, combine
their output. Essentially, frequencies below the lower end of the band
and frequencies above the upper end of the band are united once again
at a third summing amplifier stage. Comparing Figure 5.8 to the pre-
vious Figure 5.6, do you see anything noteworthy? Yes, the cut-off fre-
quencies are now interchanged. Now, the high-pass filter has a higher
cut-off frequency than the low-pass filter. While the filter resistors are
still all 10k, the capacitor values are swapped.The 1nF capacitors are
now used by the high-pass stage, while the 10nF capacitors are with
the low-pass stage.The frequency response is as expected,with a range
of frequencies attenuated. The green and blue lines show the gains
of the high-pass and the low-pass filters. Unlike the band-pass filter,
where cascading the two filters resulted in multiplying their gains for
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5.4 some generalization and formalism

Figure 5.8: Band-Reject Filter.

the band, here the gain outside the band remains the same (a little over
2, remember?).

The band-reject filter is also known as a band-stop filter, and by an-
other rather descriptive name. Looking at Figure 5.9, there would be
little surprise if one would call thus a notch-filter, although this name is
more appropriate when the filter has a narrow stop band, like the one
in the figure.

5.4 some generalization and formalism

So, we have seen second order filters (5.2 and 5.4) which seem to share
many properties. One is the dual of the other – swapping the places of
capacitors and resistors.This configuration is known as the Sallen-Key
topology.

In both cases, the base gain is 2, which is due to the feedback resistor
to the inverting input and the resistor from that input to ground. Note
that, in cases where these resistors have the same value, the gain was

1+
R

R
= 2.Thegain couldbe reduced tounity if theopamp is configured

like a voltage follower.That is. connect the output to the inverting input,
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5.4 some generalization and formalism

Figure 5.9: Band-Reject Filter Frequency Response.
(green: low-pass, blue: high-pass, red: combined band-reject)

and remove the resistor from the inverting input to ground, essentially

making the gain 1+
0∞ = 1.

Practicing engineers become familiar with these topologies. Chip
manufacturers write application notes, and even put on-line interac-
tive calculators on their webpages where you may input the desired
characteristics and the program gives you component values of almost
any type of filter.

If you are interested in how these filters work, then we need a bit
more mathematics. The differential and integral equations we saw
in Chapter 3 are fine, bur rather clumsy when it comes to practical
derivation. Actually, the brute-force calculus approach is a bit like a
sledge hammer. It works but there are shortcuts. The motivation is
this: the circuits we have are in some sense, simple linear circuits.They
preserve the frequency of the signals. Anywhere to poke, you will see
a sinusoidal signal with the same frequency. If we used non-linear
components, that would not necessarily be the case. Say, for example,
you feed AC power to a full-bridge rectifier.

The blue line (Figure 5.10) shows the input voltage, and the red, the
output voltage. The supply is 10V AC, whereas the rectified power
falls short of the 10V, since there is a voltage drop across the rectify-
ing diodes. Nonetheless, looking at the red line, you realize that the
frequency is now double the input signal frequency. Plus, the output
is not a pure sinusoidal signal – it has sharper downward pointing
peaks. This is why we said a diode circuit may not necessarily be a
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5.5 a bit of magic

Figure 5.10: Full Bridge Rectifier.
(blue: input, red: full-bridge rectifier output)

linear circuit. Most circuit you build with resistors, capacitors, and
inductors will preserve the frequency. So, how exactly does this help
us? Well, a lot of the calculus could be simplified since we need not
concern ourselves with the frequency any further than saying it is a
constant parameter throughout the entire circuit. The only difference
of voltages (and currents) at various nodes of our circuit will differ only
by amplitude (magnitude) or phase (lagging or leading).Wewill revisit
this topic in the next chapter. However, before we do so, let us present
one more filter topology.

5.5 a bit of magic

Hopefully, looking at, say Figure 5.2, you may have an intuitive feel
for what is happening.The circuit favors low frequencies. First, high
frequencies are grounded through C1, and the low frequencies are
carried over th the opamp. Same with the capacitor C2, which also
sends high frequencies directly to the output. If you look at this circuit
and think youmay not need a cookbook, that is quite understandable.
Bet there are circuits that look quite magical to the untrained eye.The
so-called state-variable filter is a good example. It is also known as the
Kerwin-Huelsman-Newcomb (KHN) biquad filter. Other than the Sallen-
Key topology, perhaps themost used one is the family of state-variable
filter topologies.

It seems, as its name implies, it took three people to come up with
this one. But it is quite worth it, as the circuit does the job of a low-
pass, a high-pass, and a band-pass filter all at once – and with only
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5.5 a bit of magic

Figure 5.11: State Variable Filter Circuit.

three opamps.Themathematical demonstration of this filter is quite
elegant, but outside the scope of this elementary book.

Figure 5.12: State-Variable Filter Frequency Response.
(green: low-pass, blue: high-pass, red: band-pass)

The frequency response shows that this is indeed a second-order fil-
ter, as the filters display -20dB/decade (-6dB/octave) attenuation.The
green line is the output of the low-pass output, and the blue line, the
high-pass output.The red line is the output of the band-pass output,
as shown in the preceding circuit.

57



5.6 experimentation and reflection

5.6 experimentation and reflection

1. Build the circuits in this chapter and verify the observations
made here.

2. Use an audio source, compare the cascaded second-order filter
output to the ones given here. Which sounds better? Could you
venture a guess as to why that might be?

3. Howwould you build an active filter that passes several bands
and rejects some others? Using more and more of the cascade
and parallel configurations might work, but would the design
not become a bit unwieldy as more circuitry is involved? Is there
a better way?
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Part IV

FORMALI SMS

Amore formal mathematical view. It is good to know that
we know enough to prove. VFR when possible but IFR
when needed.

Fairchild Semiconductor
µA 741 Single Operational Amplifier, 1968



6
PHASORS

Do you want to go a bit deeper into the rabbit hole? Do you want to
see why the filters work the way they do? Do you want to understand
enough not just to use cookbook recipes, but to design your own? If
not, youmay ship this chapter. But if you do, stick withme. It is not as
bad as it looks.

6.1 hints for a mathematical formalism

Life is pretty easywhen youworkwithDCand resistive networks. After
all, for any given resistor, the voltage drop V across the resistor and
the current through I obey the simple relationship V = IR. Luckily,
this relationship holds for the resistor even when the signals are time-
varying. That is, V(t) = I(t)R. If we tried the same with capacitors
and inductors, we have to resort to differential or integral equations.
Take Equation 2.8 we had for the capacitor we used in Chapter 2.

i(t) = C
dV(t)

dt
(6.1)

This differential equation quite nicely describes the behavior of the
capacitor. Here is a plot that shows the voltage across and the current
through a capacitor.

Figure 6.1: The Voltage-Current Behavior of a Capacitor.
(blue: voltage, red: current)
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6.1 hints for a mathematical formalism

The blue line is the voltage, and the red, the current. Notice how
current lags behind the voltage by a quarter of a period. Another way
to see this is to notice that the current peaks when the voltage is in-
creasing the fastest – when its slope if the steepest. This once again
conforms to the relationship given by Equation 6.1.

Would it not be nice to be able to write Equation 6.1 in a simpler
manner, similar to V = IRwe have for the resistor. Why can we not
do that? Well, for one thing, with DC, the signals are not time-varying
– they are constant. So, when there is no function of time concern, there
is no differentiation with respect to time to speak of. With sinusoidal
signals, things change over time, so we need beyond simple linear
equations, differential equations to express changes in time.

But not all is so desperate.

True, you need differential equations if you have signals that follow
arbitrary time-varying functions, but for sinusoidals? Sinusoidals have
so much regularity. Moreover, the frequency of all signals in a simple If this sounds like

circular logic,

well, it is.The

so-called linear
components are
those that allow

the circuit to be

described by

linear

(differential)

equations.

circuit made with linear components will be the same. That is, the
signalmay be varying, but the frequency is constant. Youmay describe
themnotwith a single constant like inDC, butwith only two quantities
beyond the circuit-wide invariant frequency. A sinusoidal function is
uniquely determined by its frequency, its amplitude, and its phase.
Since our well-behaved linear circuits preserve the frequency, we only
see different amplitudes and phases around our circuit. So, while we
maynotwrite scalar equations suchasV = IR,wemaywrite equations
that embed amplitude and phase. An algebra that works with vectors
of size two would be sufficient.

Here are the desiderata: we would like to easily add, subtract, mul-
tiply, divide, differentiate, and integrate using our variables. Rather
than a full-fledged differential-equations formalism, what can we use
to take advantage of the simplifications presented by only looking at
sinusoidal functions of the same frequency? This is not a question
unique to electricity. In physics, many phenomena are described by
waves. Physicists use phasors and phasor algebra in such cases. Typical
in many cases, the way the concept emerged, and how it is now pre-
sented differ quite a bit.The phasor is no exception. Often, there are
insights and experimental results that yield useful viewpoints.Then
come a formalism that makes things succinct by providing definitions,
axioms, rules, etc. Almost all textbooks will take this route. Here we
will try, at least to some extent, to motivate the ideas. If you would like
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6.2 a nice way to visualize phasors

to build an understanding of the historical development of how the
concept of phasors came about, take a look at the excellent exposition
by Araújo and Tonidandel [1].

6.2 a nice way to visualize phasors

The oscilloscope, or simply scope among seasoned engineers, is how
we observe and visualize the dynamics of time-varying signals. When
you view a sinusoidal wave on the scope it goes up and down in the
customarymanner. If you turn off the sweep, the sinusoidalwill simply It always amazes

me to see cheap

sci-fimovies

show a sinusoidal

signal on a few

scopes with a

bunch of

mesmerized top

scientist

crowding to

observe.What a

joke.

be a point swinging up and down, almost like a pendulum. It slows
down towards the ends, and gains speed in themiddle. Now imagine a
clock with only its minute hand, viewed from the edge. Would the tip
of the minute hand not seem the same?This is the key idea of phasors.
Surprised?Wait wait. Suppose you have a bunch of clocks, some big
some small, strewn randomly around the floor. Let the top 12 o’clock
mark on the clocks face all different random directions. Now each,
when viewed from the edge will look like our no-sweep scope signal.
Note, however, that all our clocks share one thing in common.They
complete their tour around the clock face in exactly 60minutes.That
is, they all have the same period, or the same frequency. If you take any
two clocks, the relative angle between their arms will remain the same.
Why?Well, because, they have the same frequency. Now some clocks
have longarmsand someshort. If youwanted tofind thepositionof the
tip of one clock’s arm from another, you would need two things: how
much longer (or shorter) is one arm compared to the other, and what
is the (constant) angle between the arms. Now, does this not sound
exactly like complex numbers? If youmultiply two complex numbers,
the result has a magnitude equal to the product of the magnitudes,
and the angle is the sumof the angles.The clocks armsmay be rotating,
but if you consider the arms to be complex numbers on the complex
clock-face, then the ratio of one to another is a constant.

This is what happens in linear circuits. All signals, voltages and cur-
rents are sinusoidal functions with the same frequency.They change
over time, sure, but their ratios are constant complex numbers as long
as we view our sinusoidal functions edge-wise or as phasors. Youmay
say a phasor is just an edgewise view of a rotating vector.
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6.3 euler’s identity to the rescue

6.3 euler’s identity to the rescue

A good formal way to view phasors is by recalling Euler’s identity. The
phasor here, by the way, is not the phaser Captain Kirk uses.The word James Tiberius

Kirk, born in

Riverside, Iowa,

onMarch 22,

2233, was the

captain of the

Constitution

Class starship

USS Enterprise

(NCC-1701).

comes from phase vector. We are only up one notch from scalars – from
vectors of size 1 to vectors of size 2. Rather than inventing a new vector-
2 algebra, phasor algebra uses complex numbers. After all, complex
numbers may be viewed as vectors of size 2 (2-vectors). They have two
independent parts: a real part and an imaginary part. Moreover, they
are easy to add and subtract in regular (rectangular form), that is,when
written as a+ jb. Here j is the imaginary unit element of the group
of complex numbers, often described as the quantity whose square
is−1. Although this somewhat describes the imaginary unit, strictly
speaking, it is better to view j as an independent dimension that has
to do with the phase of signals. Note that electrical engineers routinely
use the letter j rather than the letter i seen in mathematics books.That
is because electrical engineers like to reserve the letter i for current. The choice of the

letter i for current
comes from

Monseigneur

André-Marie

Ampère

(1775-1836),

whose name is

used for the unit

of current.

Ampère calls it

“an intensity of
current,” thus the

letter i.

When it comes to multiplication and division, complex numbers
are quite nimble in that as well, provided that you write them in polar
form, asAejθ whereA is called themagnitude and θ is the called the
argument.Themagnitude is also referred to as themodulus. Phasors use
the magnitude to describe the amplitude of the sinusoidal function,
and the argument to depict the phase.With this arrangement, complex
calculus fits our needs perfectly. Electrical engineers quite frequently
translate between the rectangular form and the polar form, depending
on whether addition or subtraction is needed, or multiplication or
division.

Wait a minute, you might ask. How can a complex number, or a
2-vector, be the same as a time-varying function?Here is a key concept.
Leonhard Euler (1707 - 1783) says that a complex number in polar form
can be written as

A ejθ = A [ cos(θ) + j sin(θ) ] (6.2)

First, we see that it is rather trivial to accommodate the amplitude
A, as it is nothing but a linear scale factor.Wemay drop it from further
discussion until needed. Now, if θ is not a number but a function of
time, sayωtwe would have

ejωt = [ cos(ωt) + j sin(ωt) ] (6.3)
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6.4 the impedance of a capacitor

Hereω is our familiar expression equal to 2πf. Why? Because when

t is equal to the period,ω
1

f
= 2π.That is why. All this means is that

we could carry out our calculations using the polar form, and when
needed, recover the original time-dependent rectangular.

cos(ωt) = ℜ(ejωt) (6.4)

whereℜ(·)means the real part of the expression. Alternatively, we
may use the complex conjugate of the polar expression to accomplish
the same extraction.

cos(ωt) =
1

2
(ejωt + e−jωt) (6.5)

Note that phase differences are just as easily accommodated. Say a
signal isϕ radians lagging.Then, the polar formwould be

ej(ωt −ϕ) (6.6)

When the frequency is taken as a known circuit-wide invariant param-
eter, the polar form of the complex function is often written in the
so-called phasor notation as,

Aej(ωt +ϕ) = A ϕ (6.7)

The upshot of all this is that we have a nice tool that allows us to
handle circuits subject to sinusoidal excitations, made of capacitors
and industors, almost with the ease of dealing with DC and purely
resistive networks. We will not pursue a formal proof of our methods,
but in the spirit of our book, try to motivate and provide insights.
Hopefully, by the timewe see enough examples, and discuss intuitively
why things work the way they do, we will have confidence that, as the
bread-and-butter of electrical engineering methods, phasor algebra is
just dandy.

6.4 the impedance of a capacitor

Let us put phasor algebra to a test and compute the impedance of a
capacitor. After all, a practical application of phasors in polar form
is in their use to describe impedance.We will use the complex num-
ber description of voltage and current, knowing that we can always
translate back. We have,
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6.4 the impedance of a capacitor

V(t) = vej(ωt) (6.8)

Fromthedefinitionof the capacitor,wehave, as seen inEquation2.8,

I(t) = C
dV(t)

dt
= C

d (vej(ωt))

dt
(6.9)

Luckily, differentiation is also straightforward when the phasor is in
polar form.

I(t) = C
dV(t)

dt
= Cvjωej(ωt) (6.10)

where v is the magnitude of the voltage. As an analog to resistance,
let us define the impedance as V(t)/I(t). Then, the phasor Z is the
impedance of the capacitor where,

Z =
vej(ωt)

Cvjωej(ωt)
(6.11)

Many terms conveniently cancel, leaving us the impedance

Z =
1

jωC
(6.12)

Let us pause here and reflect upon the result 6.12. First,Z is a constant,
and not a function of time (t). Next, it is inversely proportional toC,
which we have been observing all along. If we replace the parameter
ω by its equivalent 2πfwe have the alternate definition,

Z =
1

j2πfC
=

−j

2πfC
(6.13)

We also see that the impedance of a capacitor is inversely proportional
to the frequency of the signal. We have observed this too. Most impor-
tantly, provided that we do not mind working with complex numbers,
we can use impedance in place of resistance in Kirchoff ’s Law and in
Ohm’s Lawwhendealingwith capacitors.1For instance, if Iwant to find
the current through a capacitor, all I need is to divide the voltage by
the impedance of the capacitor – just like when dealing with resistors.

A similar development will show that the impedance of a resistor is
the same as its resistance. Likewise, the impedance of an inductor is
jωL, where L is the inductance.

1 Granted, this statement needs further development if a rigorous proof is sought. But
for our purposes, it may suffice, since it strongly appeals to the intuition we have so
far developed.
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6.5 differentiation and integration in phasor algebra

6.5 differentiation and integration in phasor alge-
bra

Before we leave these few sections, let us once again dwell on how easy
differentiation was in polar form. Essentially, if you differentiate a
polar phasor, youmultiply by jω. What about integration?Well, you
guessed it. Divide by the same. In all fairness, this is a most elegant
field of applied mathematics. I wish we had more time to spend on
this subject. There are alternative ways to look at the development
here. If you are interested to go deeper into the rabbit hole, youmust
study Laplace transforms. We will give a brief introduction into the
subject in Section 7.6 after we develop a little more intuition.There,
differential equations are replaced by their equivalent algebraic equa-
tions.The commonly used parameter s serves the same function as the
jω here.This is not a fluke, but different manifestations of the same
phenomena. In fact, electrical engineering books often write s = jω

and treat these methodologies nearly interchangeably. We will do the
same. Differentiating a time-domain function is said to be equivalent
to multiplying with s in the transform domain, The (Laplace) trans-
form domain is also called the frequency domain, since there is thatω.
Equivalently, integration in the time domain is equivalent to division
by s in the frequency domain.

6.6 let us check

If we can indeed handle capacitors and inductors as easily as resistors,
albeit having toworkwith complex numbers rather than readnumbers.
it would nonetheless simplify our efforts. Typical textbooks would give
themathematical rigor and then perhaps illustrate the ideaswith a few
examples. Here we do it a bit differently.Wewill construct circuits and
first try to compute, and then actually measure. Again, it is best if you
build these circuits andmeasure.The next best option is to simulate.

The two components are in series, so the total impedance would be
ZR +ZC = R+ 1

jωC . If wemeasure the AC voltage at point A, it should
be

VA = V

1
jωC

R+ 1
jωC

(6.14)
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6.6 let us check

Figure 6.2:The Simplest RC Circuit.

where V is the supply voltage. If we use a multimeter set to measure
AC voltages, then,

VA = |
1

jωRC+ 1
| V (6.15)

Usingω = 2πfwe have,

VA = |
1

j2πfRC+ 1
| V (6.16)

Let us set f = 100, R = 1k, andC = 1µF as shown.Then,

VA = |
1

1+ j0.2π
| V (6.17)

The absolute value of 1+ j0.2π is
√
12 + 0.2π2 =

√
1.395 = 1.181.

So, VA =
1

1.181
V = 0.8467V. If V = 1Volt, then VA = 0.8467V.

Wemay repeat the computations for other frequencies.
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6.6 let us check

Table 6.1: VA as a Function of Frequency f
(see Figure 6.2)

f VA

50 0.954V

100 0.847V

150 0.728V

200 0.623V

250 0.537V

Well, so far so good. If the complex variable trick works, it would
indeed simplify our life quite a bit. Here is another example to deepen
our insights. Let us try adding one more node to our circuit.

Figure 6.3: The Next Simplest RC Circuit.

Here we have two nodes, labeled A and B. Again, given that the
supply voltage is 1V ACwith a frequency of 100, let us compute the
voltages at these nodes, VA and VB. The right portion of the circuit,
R2 andC2 are in series.Their total impedance, given the component
values and the frequency, is,

R2 +
1

jωC
= 103 −

j

2π102·10−6
= (103 − j·1.592·103) (6.18)

Anexperiencedengineer, at thispoint,wouldprobably switch impedance
units fromOhms tokOhms. So, the impedancewouldbe1−j·1.592k.
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6.6 let us check

Thismakes sense, as well as it is rather intuitive.We often deal with
resistances in kOhm ranges. So, keeping the unit Volt the same, we
may switch units to kOhms andmilliAmperes. We also adjust the
units of capacitance to this three-orders-of-magnitude change, and
measure capacitance inmilliFarads. The impedance using kOhms

becomes (1− j·1.592)k. Note that we designated the impedance by a
simple "k", as the "Ohm" part is understood.This impedance is in
parallel with that ofC1. Being parallel, we need compute the recipro-
cal of the sum of the reciprocal impedances. Let us first compute the
reciprocal of (1− j·1.592).
The complex number in the denominator of a fraction is removed by

multiplying both the numerator and the denominator by the complex
conjugate of the denominator.

1

1− j·1.592
=

1+ j·1.592
(12 + 1.5922

=
1+ j·1.592

3.533

= 0.2830 + j·0.4506

(6.19)

The reciprocal of the impedance of C1 is simply j·2πf·C which is I always seek

some order-of-

magnitude

equivalence

between the

resistors and

capacitors, once

the frequency is

known. For

example, if the

frequency is

100Hz, then a

1µF capacitor

would have an

impedance of

1

2π10−4
Ohms,

which equivalent

a 1.6k resistor,

and so on.

j·0.6283. Note that we are usingnanoFarads as units here. Adding
the two reciprocals we get (0.2830 + j·1.079), whose reciprocal is
once again computed using its complex conjugate.The computation
yields (0.2274 − j·0.8671).This is the combined impedance ofC1,R2,
andC2. Since this impedance is in series with R1, we simply add the
impedance of R1 to find the total impedance as (1.227 − j·0.8671)k.
Beforewegoany further, let us lookat our result (1.227− j·0.8671)k

and see if it makes sense.The impedance, albeit a complex number, is
above 1k.That is, themagnitude is 1.227k from the real (resistive) part
plus−0.8671k from the complex component.This makes sense.The
complex component comes from the capacitors. Wemay compute the
magnitude of the complex number by squaring the two parts, adding
them, and taking the square-root.This gives us 1.503k. The argument

in radians is computed as the arctan

(
− 0.8671

1.227

)
or−0.6152 rad.

The complex component, as well as the angle, is negative, indicating a
lag of the signal – again, consistent with the nature of capacitance.
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6.6 let us check

Given the circuit (Figure 6.3), with the impedance of the total load
calculated as (1.227 − j·0.8671)k. One may think of the voltage at
nodeA as that produced by the voltage divider composed by R1 and
the subcircuit composed by C1, R2, and C2. The voltage VA would

be,
(0.2275− j·0.8673)
(1.2275− j·0.8673)

times the input voltage. Dividing the two

impedances is much easier in polar form. Converting the complex
numbers to polar form, we express this as the ratio of 0.8966 −1.314

to 1.503 −0.6151. Now it ismatter of dividing themagnitudes to find

themagnitudeofVA, that is,
0.8966

1.503
= 0.5965.Thephase is computed

by subtracting the denominator phase from the numerator phase.
Specifically,−1.314−(−0.6151) = −0.6963. If sodesired, the result
maybe converted to rectangular form,0.5965 −0.6963 = 0.4576− j·0.3826.
But, it is usually better to work with the magnitude of voltages, and
thus, better to leave the results in polar form. As seen, addition and It is a good idea to

use a calculator

that supports

complex

numbers.There

are several good

ones that work on

phones.

subtraction of complex numbers, as needed when impedances are in
series, is easier in rectangular form, while multiplication and division
is easier in polar form.

Next, we are ready to compute the voltage VB at node B. We may
consider VB to be the voltage produced by the voltage divider R2 and
C2, excited by the now-computed voltage VA.

VB = VA

ZC

R+ ZC

= VA

1

jωC

R+
1

jωC

(6.20)
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6.7 a tank circuit

We already crunched throughmuch of the expressions here.

VB = VA

− j·1.592
1− j·1.592

= VA

1.592 −1.571

1.880 −1.010

= VA0.7171 −0.4504

= (0.5965 −0.6963)(0.7171 0.4504)

= 0.5051 −1.2572 or (0.1558− j·0.4805)

(6.21)

WewriteHenrys
and notHenries
since the unit is a

Henry, named
after Joseph

Henry

(1797-1878).

Computing and verifying voltages and currents gives us the con-
fidence that we can apply the standard techniques to capacitors and
resistors as long as we use complex numbers so that we keep track of
not just the magnitudes, but also the phases. A few verification exam-
ples do not prove this statement, however, our intent here is to gain
insights, not to pursure complete rigorous formal proofs. Inciden-
tally, we did claim that phasor algebra works with inductors the same
way, by using their impedanceZ = jωL, where L is the inductance in
Henrys. Let us next try an example with an inductor.

6.7 a tank circuit

Figure 6.4 is affectionately known among old-timer radio enthusiasts
as a tank circuit, with roots reaching all the way back to Leyden Jars,
Electroscopes, Felix Savary, and Benjamin Franklin. It is called a tank I remember

making an

electroscope from

some tin foil,

thick copper wire,

a big cork, and a

small mayo jar

back in

elementary

school. I was so

proud of myself.

circuit because it reminded people of howwater sloshes back and forth
when pushed periodically at the right tempo.The resistor in series is
not critical. As such, electronics engineers would often refer to just
the capacitor-inductor subcircuit as the tank.

If you compute the impedanceZ of the parallel capacitor-inductor
pair, you get a little bit of a surprise.
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6.7 a tank circuit

Figure 6.4: A Tank Circuit.

1

Z
=

1

ZL
+

1

ZC

=
1

jωL
+ jωC

=
− j

ωL
+ jωC

=
j(ω2LC − 1)

ωL

Z =
ωL

j(ω2LC − 1)

=
jωL

1 − (ω2LC)

(6.22)

Incidentally, the reciprocal of the summed reciprocals is related to
the harmonic mean of (values of) the parallel branches. If we were to
divide the summed reciprocals by the number of branches, or equiva-
lently multiply the final result by the number of branches, we would
have the harmonic mean. Anyway, there you have it, for a given induc-
tor and a capacitor, there is a certain frequency atwhich the impedance
becomes infinitely large. Essentially, at that frequency, the capacitor-
inductor pair acts like an open circuit.Since infinity is a very large
amountof impedance, youwouldexpect that the frequency-impedance
graph would have an asymptotically raising peak at that particular
frequency. The frequency, known as the resonance frequency is easily
computed as, when the denominator reaches zero.
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6.7 a tank circuit

1− (ω2LC) = 0

ω2LC = 1

ω2 =
1

LC

ω =

√
1

LC

2πf =
1

√
LC

f =
1

2π
√
LC

(6.23)

The quantity
√
LC always appears tome as the geometricmean of (the

values of) L andC. For the given circuit 6.4, the resonance frequency
is the reciprocal of 2π10−9 which is 159.155MHz (≈ 160MHz).

Figure 6.5: The Tank Circuit, VA as a Function of Frequency.

Figure 6.5 is a log-log graph. You can see that the voltage VA is 1 at
the resonance frequency. At around 160MHz, the tank circuit acts
like an open circuit. Our insight that the voltages must asymptotically
raise around the resonance frequency is also observed. As mentioned,
the series resistor does not addmuch to the circuit, especially around
the resonance frequency. At that frequency, the circuit appears to be
broken, and thus, nomatter the value of R, the voltage VA would be
the same as the supply voltage.

Often I get the feeling that electronics is symmetrical. There are
many dualities.There is, after all, similarities between the impedances
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6.8 let us build an oscillator

of capacitors and inductors. When we place inductors in series, they
have the same feel as capacitors placed in parallel. What would your
instincts say if we built the tank circuit in series rather than in parallel?
That would be a good exercise to pursue.

6.8 let us build an oscillator

I got an idea2. After all, ultimately, I would say that engineering is
about design. Referring back to Figure 6.3, I see that the signal at node “Engineering is

the art of

directing the

great sources of

power in nature

for the use and

convenience of

man.”Thomas

Tredgold

(1788-1829)

English engineer.

B has a phase lag that is a function of the component values. Let me
first try something and see if it works.Then Iwill explainwhat inspired
me.

Figure 6.6 seems innocuous enough, but generates a periodic output
from no discernible input. It is an oscillator.

Figure 6.6: A Simple Oscillator.

Moreover, the opamp seems to be configured in a negative feedback
mode, so youmight think that the output would behave nicely and not
oscillate at all. But it does, as shown in Figure 6.7.

Figure 6.7: The Output Voltage of the Simple Oscillator.

2 Actually, I first had this idea as a teenage hobbyist in high school in 1971. I was so
proud of my discovery.
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6.8 let us build an oscillator

Can you figure out what is happening? It has not much to do with
voltages, but rather with the phase.The feedback circuit, inspired by
Figure 6.3 introduces a phase difference. We computed the phase lag
for given values in Section 6.6. Here I used slightly different values, but
still, there is a phase lag which we can compute or measure, or even
simulate and observe. At a certain frequency, the phase difference be-
comesπ radians.That is, the same signal but with an opposite sign. So,
while the opamp looks like it is operating in a negative feedback con-
figuration at most frequencies, there is a special frequency for which
the phase difference introduced by the feedback network becomes π
(180◦). At that frequency, the feedback is positive not negative.

If you simulate this circuit with ideal components, youmust start
one of the capacitors with a little charge. Otherwise the circuit would
be happy keeping all nodes at zero volts. In real life, there is no need
to place a start-up charge, since the imperfections of the components
(such as the opamp offset error) will start the circuit. Who says imper- Remindsme of

wabi-sabi.fection is bad? Since the circuit starts due to an ever-so-slight deviation
from ideal equilibrium, it needs a little time to reach steady state.Here,
the graph starts not at time zero, but after 10 milliseconds.

How would you compute the frequency generated by the oscillator?
It is the frequency at which the phase of the impedance of the feedback
circuit is π. Youmay write the phase as a function of the component
values and the unknown frequency, and solve for the frequency that
would make the phase exactly π. We will not do that. I assume by now
we have some insights into circuits and some engineering intuition. If
you ever wondered how experienced engineers quickly find a way to
read the circuits, what I say nowmay give you some idea. Look at the
circuit (6.6) and note that there are three sets of resistor-capacitor Sub-
circuits. Each one could be thought of as a voltage divider (Figure 6.8).

Figure 6.8:The Voltage Divider Subcircuit.

We are not as much interested in the magnitude of the output volt-
age as we are in the phase lag it introduces.The output voltageVout as
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6.8 let us build an oscillator

a function of the input voltageVin is easily computed. After all, this is

nothing but a voltage divider.The impedance of the capacitor is
1

jωC

and the total impedance is R +
1

jωC
. So,

Vout = Vin

1

jωC

R +
1

jωC

= Vin

− j

ωRC − j

= Vin

1− jωRC

1+ω2R2C2

(6.24)

We said we were not much interested in the magnitude of the output
voltage, so let us ignore the real-valued denominator.The phase will
be the argument of 1− jωRC. Unless the frequency, or R, orC is zero,

there will be a phase lag in the range (0, −
π

2
). Note that the interval

boundaries are excluded from the set of possible values.

Nowhere comes thekey insight: if you cascade these voltagedividers,
each will introduce a phase lag which are additive. In our circuit (6.6)
we have three identical voltage dividers. As we want the total phase
lag to be π, which of course is the same as−π. If each voltage divider

had a phase lag of
π

3
the total lag would be exactly what we need. Of

course, we do not set the lag.The circuit settles at at the frequency at

which the lag at each divider is
π

3
.
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6.8 let us build an oscillator

−
π

3
= arg(1− jωRC)

tan(−
π

3
) = −ωRC

ωRC =
√
3

2πfRC =
√
3

f =

√
3

2πRC

(6.25)

Let us find out the lag of each divider3 in our circuit. With R = 10k

andC = 10nF the frequency comes to about 2.7 kHz.Well well, there
is good news and there is bad news. Good that we got a nice sinusoidal
signal out with no other input. It looks clean.We can sure use it. But
the bad news is that, looking at Figure 6.7, the frequency is more like
3.7 kHz. It seems our assumption that these three voltage dividers
are independent is a bit of an optimistic overstatement. After all, the
downstream dividers are in parallel with the capacitor of each divider.
An exact expression is possible, but we took a shortcut, did we not?
Still, not all is lost. After all, electronics insights is both qualitative and
quantitative–perhapsmostly qualitative.Ourhunch that three voltage

dividers, each with a lag in the range of zero to
π

2
, when cascaded

could create a combined lag of exactly π, and thus fool the opamp
as it seems like positive feedback. Not only did we have the insight,
but we as good engineers, found a practical use for this – namely,
we built a nice oscillator. If you want to get closer to the computed
frequency, I suppose we need to not load the stages, andmake them
really independent.This is another good opportunity to revisit some
previous discussions. Do you remember the good old voltage follower?

Buffering the voltages dividers is a job for the voltage follower. As
seen in Figure 6.9, the extreme high input impedance of the opamp
means that there is no leakage of current from the dividers to the follow-
ing stages.The voltage at each divider is faithfully duplicated and pre-
sented to the downstream stage all with low impedance (read: power
to drive the following stage).

3 Notice we just said “divider” and not the whole term, “voltage divider”. Field engineers
more often than not drop part of the terminology when it is obvious from the context.
Youmight as well get used to it too.
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6.8 let us build an oscillator

Figure 6.9: A Simple Oscillator.

Now the frequency seems closer to the 2.7 kHzwe computed. You
may wonder why we have an opamp at the end. Well, if we had con-
nected the output directly to the initial amplifier, then the 25k input
resistor at the amplifier would drain (leak current from) the capacitor
at the last stage. After all, this resistor is connected to the inverting
input of the initial opamp, whose non-inverting input is connected to
ground. Since there is no voltage difference between the two inputs of
the opamp, the 25k resistor is as good as having its end connected to
ground. A 25k resistor in parallel with the capacitor of the last stage
would alter its characteristics, so we put another voltage follower there.
After all, many modern opamps come 4 in a single chip.The good-old
LM747 was two LM741s in a single 14-pin DIP (Dual in-line Package),
and the LM148, a quad version of the LM741. I used the workhorse
LM324, the improved version of the quad 741 in 14-pin DIP in many a
circuits I designed. By the way, it seems the LM747 came out just about
the same time Boeing made a big splash with its Jumbo 747.

Figure 6.10:The Output Voltage of the Simple Oscillator.
Voltage followers are used as in Figure 6.9.
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6.9 experimentation and reflection

6.9 experimentation and reflection

1. Build the 6.3 or at least simulate it. Verify that our computations
match the measured value of VA. Compute the voltage VB and
verify its value on the circuit as well.

2. Build the tank circuit in series as shown in Figure 6.11.Write the
equations that describe the voltage VA at nodeA as a function
of frequency. Comment if you see any similarities to the parallel
tank circuit.

Figure 6.11: A Series Tank Circuit.

3. Experiment with the oscillator (Figure 6.6) by changing the gain
at the first opamp. See how the circuit behaves if the gain is not
sufficient to sustain oscillations.

4. Sincemanyopampsnowcome in four in apackage,wemaybuild

an oscillator with four-stages, each stage introducing a lag of
π

4
radians.This type of oscillator has becomeknownas the bubba os- It is embedded in

electronics

folklore that some

mischievously

playful

applications

engineers at

Texas

Instruments

coined the word

bubba.

cillator. Write the equations following the same train of thought
in this chapter. Then build and compare your observations to
your calculations.

5. There are several well-known topologies used to make opamp-
based oscillators. Search the web to find out about Colpitts Hart-
ley, quadrature, andWien-bridge oscillators. Build and experi-
ment with these oscillators. Discuss the advantages and disad-
vantages of each.
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6.9 experimentation and reflection

6. Revisit the Sallen-Key Topology (Figure 6.12).Write the output as
a function of the input using general components.That is, allow
the four components to have general impedances, allowing each
to be a resistor, a capacitor, an inductor. How do various combi-
nations of the component type selections affect the behavior of
the circuit?

Figure 6.12: The Sallen-Key Topology.
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7
TRANSFER FUNCT IONS

If you have come so far, either you are interested or have nothing better
to do. Or perhaps both.

Formalisms are good because they lead to standard methodologies
which, when adopted and become familiar, allows the engineer to
cruise on auto-pilot. We know how to evaluate circuits using complex-
algebra-based phasors which makes life easy. You come to a point
where you do not even think about what is complex, what is an angle,
nothing. You follow the methodology and use it. It lets you focus on
the real issues – in my case, designing circuits. Sure, you could use
canned software packages, but going through the motions, preferably
at a lab workbench, provides invaluable insights. I suppose it is also
a matter of how you view electronics. Is it just a job or a passion, is it
rathermundane pre-scriptedwork you are after, or imaginative design
work? Canned packages are probably fine if electronics is not the main
ambition in your life. After all, onemay gain insights into the software
packages, learn its quirks and idiosyncrasies, find shortcuts, etc. But
if you have come this far, let us assume that you are still anxious to
continue with our journey, gain further insights, and see somemore
of the landscape.

Electrical engineeringhasalmost a two-century footprint inacademia.
Over the years besides our trusted phasor formalism, there has been
wide-spread acceptance of another key concept: transfer functions us-
ing Laplace transforms. You see, when we limit ourselves to sinusoidal
signals, there is much structure that is open to intellectual and compu-
tational exploitation. For one thing, as said, all signals in well-behaved
circuits with linear components1 will have the same frequency. If you
have a keenmathematical eye, you will of course notice that both the
derivative and the integral of a sinusoidal function are also sinusoidal.
So, just as in phasors, if we want to deal with differentiation or in-
tegration, once again, the results may be obtained not by explicitly
applying calculus to the equations, but by shortcuts we develop. It is
not surprising that the Laplace transform simplifies things. Things
are simpler than the generic case, due to such structure. Another way

1 see Section 2.3
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7.1 transfer functions

to see this is to realize that we are dealing with a subset of all possi-
ble time-varying functions. And in mathematical jargon, the set of
functions under differentiation and integration is closed.They are all
sinusoidal.

7.1 transfer functions

Modern control theory views circuits as boxes with input signals and
output signals. A filter is a good example.The output is a function of
both the input and what happens in the box. It turns out that if we
describe this relationship in the transform domain using the Laplace
transform, things become easier. Essentially, differential equations
are transformed into algebraic equations. Typically, the relationship is
depicted as below.

input:
x(t)

Signal
Altering
Circuit

output:
y(t)

Figure 7.1: The Circuit as a Black Box.

The input and output signals are shown as x(t) and y(t) in Fig-
ure 7.1.These are typically the input and output voltages, and consid-
eredmostly as either DC or sinusoidal signals. Each nice continuous
function has a transform2, typically denoted by the same letter as the
time-domain function, but with its name capitalized. You will recall
from our discussions in Section 6.5 that differentiation amounted to
multiplying with s = jω. Here, the s is the variable of the transform
domain version of the signal. But there ismore.The ease of differentia-
tion allows us to write differential equations in time domain as simple
algebraic equations in the transformdomain. Solvingdifferential equa-
tions becomes easier – but that is not the point. It also allows us to
think in the transform domain. Wemanipulate simple linear algebraic
equations but are conscious of their meaning as differential equations.
Since the variable of the transforms s is related to frequency, electrical
engineers refer to the transform-domain as frequency-domain. It seems
it is more intuitive that way. I realize, I appeal to your intuition rather
than a formal development here. The subject of transforms is quite
elegant and has many many applications in engineering.The purpose
here is to develop intuition and gain some operational experience.This,

2 Notice again, we dropped the term “Laplace” and just said “transform”.
82



7.2 time for some examples

I hope, will constitute the motivation for you, in the fullness of time,
to deep-dive into transforms.

Laplace
transform
of the input:

X(s)

Transfer
function

H(s)=Y(s)/X(s)

Laplace
transform

of the output:
Y(s)

Figure 7.2:The Circuit as a Black Box in the TransformDomain.

Werevisit our black boxbut nowconsider it in the frequencydomain.
Since the input and output are now described algebraically, their ratio
H(s) is easily evaluated.This is called the transfer function.ThisH(s)
uniquely describes what the circuit does, how precisely it takes the
input to produce the output. A good example is our filters, which take
input sinusoidal signals and apply selective gain or attenuation based
on the frequency of the signal to produce the output.

7.2 time for some examples

Let us state the trivial one first: What is the transfer function of an
inverting amplifier? Assuming it is an ideal opamp, as in Figure 2.1, it

is simplyH(s) = −
R2

R1
, is it not? You want the output, multiply the

input by the constant−
R2

R1
. Luckily, the transform domain preserved

linearity and superposition (see Section 2.3).

That was easy. Now let us take a look at the figure we discussed
(Figure 4.6 in Section 4.5 and ask, what is its transfer function?Here is
the circuit once again, this time with component values (Figure 7.3).

Let us compute the impedanceZf of the feedback subcircuit com-
posed of R2 andC in parallel.

83



7.2 time for some examples

Figure 7.3: Low-Pass Filter.

1

Zf
=

1

R2
+ sC

=
1+ sR2C

R2

Zf =
R2

1+ sR2C

(7.1)

So, the ratio of the output to the input is,

Vout(s)

Vin(s)
= −

R2

R1 + sR1R2C

H(s) = −
R2

R1 + sR1R2C

(7.2)

With the values inserted, we have

H(s) = −
100k

10k + s 10k 100k 1n

= −
105

104 + s10410510−9

= −
10

1 + s10−4

(7.3)
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7.2 time for some examples

At this point, you may get this eerie feeling that something is amiss.
Take a look at the transfer function.The ratio must be unitless. It is, Actually,

s = −jω , but

the sign does not

really matter. It

makes the phasor

rotate in the

opposite

direction, that is

all.

after all, the ratio of the output to the input, both the same units, what-
ever they may be. The right hand side, has Ohms in the numerator,
and the sum of Ohms (R1) with whatever units sR1R2C has. As we
discussed in Section 2.4, R2C is a time constant and thus has units
of time ([T ]). If the dimensional integrity is to be preserved, smust
have dimensions [T ]−1. Could that be it? Again, recall how we defined
s = jω when we introduced the phasor notation, V(t) = Aejωt.
Now, a good engineer would understand that if there is an exponent,
it better be unitless.This is clear if you consider the Taylor series ex-
pansion of the exponential and realize that all powers of the exponent
contribute to the exponentiation. Speaking of symmetry, the inverse,
that is if there is a logarithm of an expression, it too better be unitless.
So, yes, s has units [T ]−1. It, after all, is a multiple of the frequency.
You see, we switched our viewpoint from time (t) to (a multiple of) fre-
quency (s), from the time domain to the transform domain.When you
realize the link, you better appreciate how practical former electrical
engineers have been, all for the sake of facilitating comprehension and
computation.Maybe it was because computation was time consuming
before the abundant availability of computers.

First, let us look at the transfer function (Equation 7.3) from a prag-
matic viewpoint. At a glance, it gives us the information that the circuit
has zero gain at high enough frequencies, and a gain of−10 at low fre-
quencies. Why?Well, s = jω = j2πf, is it not? Just let s→0 and then
let s→∞ and ask what is the value of H(s) – it is a constant at these
extremes.The negative comes from the fact that the opamp is run in an
inverting configuration.The time constant is 10−4 sowe are looking at
the millisecond range of operation, or equivalently, interesting things,
such as the cut-off frequency, in the kHz range.

More rigorously, though,We see that the magnitude of the transfer

function 7.2 will always be in the range (0,
R2

R1
), depending on the

frequency. Making the substitution s = jω, we express the transfer
function as a complex number.
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7.3 a practical view of transfer functions

H(s) = −
R2

R1 + jωR1R2C

= −
R1R2 − jωR1R2

2C

R1
2 + ω2R1

2R2
2C2

(7.4)

The negative imaginary component says that the output will lag
the input.The angle is determined by the numerator alone, since the
denominator is a real value.

ϕ = −arctan(
ωR1R2

2C

R1R2
)

ϕ = −arctan(ωR2C)

(7.5)

But we knew all this.We could have computed these as we discussed
our filters. What exactly does the transfer function contribute?Well, if
we could start with a transfer function and then build a circuit that im-
plements it, we could save some time. Linear circuits will have transfer
functions in the form of ratios. Both the numerator and the denomi-
nator will be polynomials in s. The zeros of the numerator polynomial
will tell us when the circuit has zero impedance.These are, appropri-
ately, called the zeros of the transfer function. Similarly, the zeros of the
denominator polynomial tell us for what frequencies the circuit has
infinite impedance.These are called the poles of the transfer function. Let
us say that we want a filter that has infinite impedance at a certain
frequency. Sounds familiar, does it not.Think of the tank circuits we
build (6.4). Notice it has one pole and no zeros.

7.3 a practical view of transfer functions

All this discussion if fine, but I must say, experienced practicing engi-
neers often have a more pragmatic view of transfer functions. Let me
explain.

First, you notice that anytime there is a capacitor or an inductor,
we add onemore order to the differential equations. Capacitors and
inductors are energy-storing passive linear elements.They are linear,
because their behavior is expressed by rather simple linear differential
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7.3 a practical view of transfer functions

equations.This is the case at least if the circuit is properly built. Sure,
you may place two capacitors in parallel and your differential equa-
tions will have the same order, not an order higher. After all, placing
two capacitors in parallel simply makes a bigger capacitor with with a
capacity equal to the sum of its constituent capacities, does it not? So,
the order is the same as the effective number of linear energy-storing
passive components. Next, we see that the transfer function, when
written in the frequency domain using the Laplace transform, typi-
cally ends up looking like a ratio of two polynomials in s = jω. The
transform is useful, since it allows differential equations to be repre-
sented by simple algebraic equations – inmost cases polynomials.The
magnitudes of the numerator and the denominator depend on s or
more revealingly, the frequency,ω = 2πf. The frequencies at which
the numerator or the denominator magnitude is zero are of interest.
These are the zeros and poles of the system.

(a) Low Pass RC Voltage Divider

H(s) =
1

sRC+ 1

(b) High Pass RC Voltage Divider

H(s) =
sRC

sRC+ 1

(c) Low Pass RL Voltage Divider

H(s) =
R

sL+ R

(d) High Pass RL Voltage Divider

H(s) =
sL

sL+ R

Figure 7.4: R-C Voltage Dividers.
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7.3 a practical view of transfer functions

Besides the insights into the form of the transfer function, we have
some ideas aboutwhat kinds of transfer functions simple building block
circuits have.Our trusted good-old voltage divider is once again a good
place to start (Figure 7.4). We will call these circuits elemental circuits.
They will be used as the smallest of all building blocks to construct
many complicated circuits. When experienced engineers read circuits, This is a bit like

musicians often

viewing chords as

elemental units

and not as

individual notes.

they often view these voltage dividers not as individual components,
but as atomic blocks.

Each circuit has one energy-storing element, and thus the denomi-
nator polynomials are of degree 1.The numerators depend on the type
of circuit. Noting that the variable s is proportional to frequency, think
about what happens when s = 0, that is under DC voltages.The low
pass circuits will have a gain of 1, and the high-pass circuits will have
a gain of 0. What about when s → ∞?Then it is the other way around.
All this insight without any effort at all.

We may extend these simple building blocks by using a capacitor
and an inductor, as depicted in Figure 7.5. As we will have two energy-
storing components, we would expect to see second-degree denomi-
nator polynomials. An experienced engineer could quickly determine,
from the characteristics of the circuit, and the number of effective
energy-storing elements, the degrees of the numerator and denomi-
nator polynomials.The degree of the numerator polynomial in passive
circuits, like the voltage-divider-type we see here, will always be at
most the degree of the denominator polynomial.

(a) Low Pass LC Voltage Divider

H(s) =
1

s2LC+ 1

(b) High Pass RC Voltage Divider

H(s) =
s2LC

s2LC+ 1

Figure 7.5: L-C Voltage Dividers.

Before we end this section, let us not forget our tank circuits. Cir-
cuit 7.6a passes most low frequencies through the inductor and high
frequencies through the capacitor. Only at the resonance frequency of
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7.4 transfer functions are linear operators

the tank circuit, does the circuit deny any current.The opposite is the
case for Circuit 7.6b. It shorts most frequencies to ground, except at
the resonance frequency, which is seen at the output.

(a) Tank Circuit (Notch)

H(s) =
sRLC

s2LC+ sRLC+ 1

(b) Tank Circuit (Inverse Notch)

H(s) =
s2LC+ 1

s2LC+ sRLC+ 1

Figure 7.6: Tank Circuit Voltage Dividers.

7.4 transfer functions are linear operators

Take a look at the elemental circuits in Figure 7.4, Figure 7.5, and
Figure 7.6. Each has its transfer function. If we cascade two of these
building blocks, the combined transfer function would be the product
of the two individual transfer functions. After all, the input times the
transfer function gives the output.

H1(s) =
(Y(s)/X(s))

H2(s) =
(Z(s)/Y(s))

X(s)
Y(s)

Z(s)

H(s) = H1(s)H2(s)X(s) Z(s)

Figure 7.7: Cascading Transfer Functions.

As seen, cascading transfer functions simply amounts to multiply-
ing the constituent transfer functions, that is, (Y(s)/X(s))(Z(s)/Y(s)) =
(Z(s)/X(s)). Along with superposition (see Section 2.3), that is, the
additive property, we see that transfer functions make short work of
circuit analysis and design.

89



7.5 synthesis – circuit design

X(s)

H1(s) = Y(s)/X(s)

+

H2(s) = W(s)/X(s)

Z(s)

Y(s)

W(s)

H(s) = H1(s) +H2(s)X(s) Z(s)

Figure 7.8: Adding Transfer Functions.

Even though we showed only two transfer functions cascaded, it
should be clear that this is extensible. The same goes for adding or
subtracting transfer functions. In fact, any linear combination of these
operations is permissible. With this in hand, we can design circuits by
combining elemental ones, the building blocks based on the voltage
dividers that have served us so well so far.

7.5 synthesis – circuit design

The title sounds quite pretentious, we do not claim to be able to design
any circuit, but simple circuits intended to run with sinusoidal signals.
I am sure you can, at this point, take a circuit, and write its transfer
function. So it is time to entertain the opposite. Suppose you are given
the transfer function and asked to design a circuit that implements
the functionality specified by is.

We have elemental circuits, which wemay string to our heart’s con-
tent and keep multiplying the transfer functions until you see the
proper degree polynomials at the denominator and the numerator.We
may also add these to get even more flavors. Since there are various
ways we can obtain the same transfer function, we realize that there is
more than one way to provide a circuit for a desired transfer function.
Here is a nice one that would serve as an example. Let all coefficients
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7.5 synthesis – circuit design

of the numerator (Ni’s) and the denominatorDi’s be real numbers
within reason.

H(s) =
sN1 +N0

s2 + sD1 +D0

(7.6)

Note that we set the coefficient of the highest power of the denomi- If you want to
impress your

friends, refer to

this as amonic
polynomial.

nator polynomial equal to unity.This is good engineering practice. En-
gineering parsimony says that use only asmany parameters as needed.
If the leading coefficient were not unity, we would normalize by divid-
ing both the numerator and the denominator by this value and end up
with the form of Equation 7.6.

Granted, theremay bemultiple ways to design this circuit, but let us
give it a try. First, observe that this is a low-pass-type of circuit. How
do we know that?When s→∞ the gain is 0 and when s→0, the gain

is
N0

D0
. Good. Now also observe that the denominator polynomial is

of degree 2. We should expect that two energy-storing components
would suffice to build the circuit. Engineering insight helps us, does it
not?

A common trick is to write the expression 7.6 as a sum of two frac-
tions.

H(s) =
sN1 +N0

s2 + sD1 +D0

=
u

s− r1
+

v

s− r2

(7.7)

where r1 and r1 are readily evaluated as the roots of the original de-
nominator polynomial s2 + sD1 +D0. This well-known technique is
called partial fractions expansion.

Back to our design. Pick two elements from Figure 7.4 such that
when we add their transfer functions, we get a polynomial of s of
degree 1 in the numerator, and of degree 2 in the denominator. As
seen, and as predicted, there are alternatives. Let us pick circuits a
and c from Figure 7.4. If we want a clean circuit, wemust make sure
that subcircuits do not load each other. Otherwise, we will have the
same error we saw when making our oscillator in Section 6.8. You
may first try this and see how bad it will be.Then try to compensate
by slightly adjusting the component values. But let us use opamps –
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7.5 synthesis – circuit design

after all our whole subject is opamps – andmake sure that subcircuits
operate as intended, without affecting each other. There is actually
one other advantage to using opamps.The two fractions we addmay
also need different gains. Let us clarify.

If we add the transfer functions of these two elemental circuits, we
get,

Ha(s) =

1

R1C

s+
1

R1C

Hc(s) =

R2

L

s+
R2

L

(7.8)

But we can also multiply each transfer function by a constant. This
would correspond to introducing a gain of an arbitrary value, positive
or negative. If the gain is to be greater than unity, the opamp is an
ideal choice. If the gain is less than unity, then we may use a simple
voltage divider.

H(s) = GaHa(s) +GcHc(s)

= Ga

1

R1C

s+
1

R1C

+Gc

R2

L

s+
R2

L

=
s(

Ga

R1C
+

GcR2

L
) + (Ga +Gc)

R2

R1CL

s2 + s(
1

R1C
+

R2

L
) +

R2

R1LC

(7.9)

We are almost there. Nowwe need to pick component values that
would give us the specified transfer function.That is, we pick the val-
ues in Equation 7.9 that would coincide with the coefficients in Equa-
tion 7.6;
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7.5 synthesis – circuit design

N1 =
GaL+GcR1R2C

R1CL

N0 = (Ga +Gc)
R2

R1CL

D1 =
L+ R1R2C

R1CL

D0 =
R2

R1CL

(7.10)

Since we have six parameters which we may freely choose, but only
four coefficients, wemay select the same value for R1 and R2.This still
gives us onemore degree of freedom than needed. Since our equations
are not linear, strictly speaking, thismay not work in general, but here,
the equations look innocent enough to give it a try.

N1 =
GaL+GcR

2C

RCL
(7.11)

N0 = (Ga +Gc)
1

CL
(7.12)

D1 =
L+ R2C

RCL
(7.13)

D0 =
1

CL
(7.14)

Let us try a numerical example. We expect R to be in the kiloOhm

range,C inmicroFarads and L inmilliHenrys. Keeping these in
mind, here is a reasonable transfer function with round numbers.

H(s) =
sN1 +N0

s2 + sD1 +D0

=
s(2.1·104) + 2.2·107

s2 + s(2.0·104) + 2.0·106

(7.15)
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7.5 synthesis – circuit design

Since we have one degree of freedom, let us pick the capacitor to
be C = 10µF. The value of the inductor L may now be computed

from Equation 7.14 as L = 50mH. The DC gain,
N0

D0
= 11, which

is the same asGa + Gc = 11. We now have a quadratic formula in
Equation 7.13 to compute R. All values other than R are known, as we
compute R = 995Ohm≈1.0k.The only other thing left is to compute
Ga andGc. Their sumwas computed from the DC gain as 11, we use
Equation 7.11 and the DC gain to compute the gains. Note however,
thatGaL is many orders of magnitude smaller thanGcR

2C, which
means,

N1 ≈
GcR

2C

RCL

≈
GcR

L

(7.16)

which givesGc≈1, and thus,Ga≈10. Having found the component
values, we nowmay build and test our circuit (Figure 7.9).

Figure 7.9: A Designed-to-Order Circuit.

The two elemental circuits are fed from the same AC source. The
top circuit is circuit a from Figure 7.4, and the bottom, circuit c. The
output of the top circuit is amplified by a factor of 10. The output of
the bottom circuit feeds into a voltage follower, so the gain there is
unity. Both opamp outputs are added by a third output opamp.

The frequency response as shown in Figure 7.10 indeed looks like
the circuit works as a low pass filter.The second-order nature of the
filter is evident from the two cut-off frequencies.The red line shows
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7.6 the laplace transform

the output, the blue and green lines show the components from the
top and bottom half of the contributing circuits. The gains of 10 and 1
are clearly visible on the graph.

Figure 7.10: Frequency Response of the Designed Circuit.
(blue and green lines are from the subcircuits a and c,
the red line is the combined frequency response.)

As stated, there are many other alternatives you could choose. Prag-
matic concerns must be kept in mind. Keep the capacitor and induc-
tor values reasonable. If other factors, such as noise, vibration, cost,
etc. are of concern, then of course, there is much more to consider.
Nonetheless, the exercise should give you an idea. Moreover, you may
consider not just adding transfer functions, that is, not just placing
elemental circuits in parallel, but other network topologies.There is
no limit to how youmay arrange the elemental circuits.

7.6 the laplace transform

Since we made use of the Laplace transform, it may be a good idea
to say a few things about this rather useful tool. It is named after
Pierre-Simon, marquis de Laplace (1749-1827), the French polymath,
but its practical use in engineering and other applied areas owes to
the development and contributions of many scholars.

A transform deals with two domains which have a one-to-one rela-
tionship. Elements and operations in one domain have corresponding
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7.6 the laplace transform

elements and operations in the other. Some operations are easier in
the other domain, so you transform your elements to the transform
domain, perform the corresponding operations, and transform the
elements back to the original domain. Other than such conveniences,
the transform domain provides a deeper understanding of the related
phenomena.

Take nonnegative real numbers and their logarithms. Each nonnega-
tive real number has a corresponding logarithm.The inverse transform
is also straightforward. Youwould take the logarithm-domain element
and use it as the exponent of e (Euler’s constant). Multiplying a bunch of
real numbers is easier in the transform domain. Youwould simply add
their logarithms. For example, multiplying gains of successive stages
could be simplified by adding the decibels. MSC, anyone?

The elements of the Laplace transform are functions, such as the
time-domain function v(t). The elements of the transform domain
are also functions, such as V(s). Differentiation in time domain cor-
responds to multiplication by s in the transform domain.This allows The topic of

convolution is a
worthy one, but

slightly involved

to be given proper

attention here.

differential equations in time-domain to be written as algebraic equa-
tions in the transform domain. In addition, convolution in the time
domain becomes multiplication in the transform domain.These two
properties alone make the Laplace transform and ideal tool for electri-
cal engineering applications. Moreover, the Laplace transform looks
verymuch like phasors, which allows us to interpret themwith further
insights.

The Laplace transform of a time-domain function f(t) is defined as,

F(s) =
∫∞
0 f(t)e−stdt (7.17)

Most books do not specify, but I will. The units of s is the inverse of
the units of t. In the original function f(t) is a function of time, then s
will have the unit [T ]−1. The units of F(s) is the units of f(t) times [T ].
For example, if we take the transform of a voltage v(t) to beV(s), then
V(s) will have units [V][T ]. I suppose many books treat the Laplace
transform as a mathematical formalism.Then, engineering units may
seem superfluous. But for an engineer, units are of utmost importance.
It allows checking results to see if they make sense. It also provides
further insights into the systems.

We take advantage of the Laplace transform in phasor algebra, ow-
ing to the fact that jω and the transform variable s fulfill the same
function, and thus are rather interchangeable in our neck of thewoods.
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7.6 the laplace transform

Table 7.1: Laplace Transforms – Basic Survival Pack

Time domain Transform (frequency) domain
f(t) F(s)

δ(t) (impulse at t = 0) 1

u(t) (unit step)
1

s

eαt
1

s− α

cos(ωt)
s

s2 +ω2

sin(ωt)
w

s2 +ω2

Operations
df(t)

dt
sF(s)

∫∞
0 f(τ)dτ

1

s
F(s)

Wewrite differential equations in the transform domain, multiplying
the transform V(s) by s to capture the transform sV(s) of the deriva-
tive function dv(t)

dt . Reciprocally, dividing by s the transform of the
time-domain function v(t) gives us the transform of the integral of
v(t).

The Laplace transform ismost suited for workingwith transfer func-
tions. The transfer functions of linear circuits come from ratios of
functions and their various derivatives. Thus ultimately, we end up
with numerator and denominator polynomials in s. Provided that you
express the input in the transform domain, it becomes an algebraic
task to compute the transform of the output. Once again, you must
convert the output to time domain.We typically deal with simple in-
puts. Table (7.1 gives a minimal set of functions, their transforms, and
operations.
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7.7 experimentation and reflection

This is only bare-bones information. It is a good start just to follow
the rudiments we discuss here. As your journey takes you to grow as
a competent engineer, I encourage you to study transforms in depth
and see their many fascinating properties and applications. Good en-
gineers are bilingual, they are equally at home thinking and speaking
time-domain or frequency-domain.

7.7 experimentation and reflection

1. Regarding Equation 7.15, find the cut-off frequencies of the two
elemental subcircuits. Are the cut-off frequencies detectable
from the transfer function?

2. Findother circuits thatwould implement the same transfer func-
tion (7.15). Compare the frequency response to the one given in
Figure 7.10.What are the advantages and disadvantages of each
alternative?

3. Build a circuit that implements the transfer function

H(s) =
s(2.1·104) − 2.2·107

s2 + s(2.0·104) + 2.0·106
(7.18)

How is this related to Equation 7.15?

4. Build a circuit that implements the transfer function

H(s) =
s(2.1·104) + 2.2·107

s2 − s(2.0·104) + 2.0·106
(7.19)

How is this related to Equation 7.15?

5. Suppose you wanted a transfer function whose frequency re-
sponse has a double peak, like the letter ’M’. What is the mini-
mum number of energy-storing components needed?Why?

6. Referring to the previous question, design and build such a cir-
cuit. Write its transfer function and verify that its frequency
response has the prescribed shape.

7. Write the transfer functionof theSallen-KeyTopology (Figure6.12).
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Part V

CONTROL ENG INEER ING

Mind your signals and you can control the world.

Linear Technology
LM108 Operational Amplifier, 1969



8
CONTROL ENG INEER ING

We somewhat get used to the way things work. I remember, as a young
lad, my father used to take me to the shop. When you turn on the
machines, some would rev-up for a second or two. You just get used
to it, so much so that, if it takes longer or shorter to achieve normal
operating speed, you suspect there is something wrong. Usually, the
speed quickly builds up, but then as it gets closer and closer to the
operating speed, its approach slows down.Mostmachines – and some
people – do that. Vary rare that you see someone hit the road running.
Control engineering is about setting the inputs so that the output is
where you want it when you wanted, of course, within reason. This
requires understanding the control side of things, but also youmust
know the nature of the device being controlled.

8.1 device models

The rev-up I mentioned is often approximated by a simple system. I
say simple, because we will construct a linear model. The equation
defining the system dynamics will only be a first-order differential
equation. Consider a constant force applied to move a massm under
friction. Let v(t) be the speed of the mass. It may be a linear motion,
or rotational. If rotational, the massm should be interpreted as its
moment of inertia.

F = m
dv(t)

dt
+ kv(t) (8.1)

In Equation 8.1 the constant k represents the friction coefficient.
The equation simply says the force applied will be confronted by the
inertial force and the friction force. After all, did Newton not say for
every action there is an equal and opposite reaction? We assume that the
mass is initially at rest. Let us, for goodmeasure, put the differential
equation in a standard form, complete with its boundary condition.
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8.1 device models

dv(t)

dt
+

k

m
v(t) =

F

m

v(0) = 0

(8.2)

The solution to the homogeneous equation, that is, when the right-
hand-side of Equation 8.2 is zero, has the generic exponential form,

dvh(t)

dt
+

k

m
vh(t) = 0

vh(t) = e
−
k

m
t

(8.3)

The function vh(t)will solve the homogeneous differential equation.
Wemay add vh(t) to any solution of the non-homogeneous differen-
tial equation 7.3, since the contribution of vh(t) to the right-hand-side
is zero. We next, in the tradition of differential equations, seek a par-
ticular solution. We note that the constant (F/k) will also solve the
differential equation. Being a constant, its derivative is zero. When
multiplied by (k/m) it will give us the desired right-hand-side of Equa-
tion 6.3. All that remains is to combine the particular solution and the
solution to the homogeneous equation to find the solution to our defin-
ing differential equation.We seek the scalar λ in

v(t) = λvh(t) +
F

k

= λe
−
k

m
t
+

F

k

(8.4)

that satisfies the boundary condition v(0) = 0. It turns out that λ =
−(k/m)would do the deed.We now have the specific solution to our
differential equation.

v(t) =
F

k

1− e
−
k

m
t

 (8.5)
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8.2 simulating device models

I hope you knew how to solve first-order non-homogeneous differ-
ential equations, and the explicit rather pedantic exposition did not
bore you.We often employ and talk about simple short-cut methods
in electronics. But it is good to keep inmind that all thesemethods are
planted in some theoretical terra firma.

Before we continue, let us inspect Equation 8.5 a bit. Clearly, at
t = 0, v(t) = 0.When t → ∞ the exponential portion of the equation
vanishes, and we have v(t) = F/k as t → ∞. This also is consistent
with the physics. Note that the friction force, being the product of the
velocity and a coefficient is kv(t), which in the long runmatches the
applied force F. Also note that the units check. Since the coefficient
k has units [M(mass)]/[T ] (why?), the exponent is unitless, and the
units of F/k, as observed, is velocity.

The response is typical of first-order systems. It asymptotically ap-
proaches steady state.The approach is referred to as exponential decay,
since it is self similar.That is, the difference between the current value
and the target value is reduced by a constant fraction per time. The
same is true for radioactive decay, for example. Say, it is half per unit
time.That is what gives it self similarity, and it is a dead give-away that
you are dealing with a first-order system under the influence of some
constant rate. If the exponent were positive, it would be exponential
growth, such as when you have compound interest or unconstrained
population growth.

How fast will the speed settle?Theoretically, it will never reach the
target, but in practical terms, it will be indistinguishable from the
target soon enough.The rate of decay is determined by the exponent.
More specifically, by the time constant. In our case, the time constant
is (m/k). Not only does it have units of time, but at t = (m/k), the
exponential term is e−1 = 0.37, meaning it has made 63% of its way
to the target (why?). At two time units, that is, when t = 2(m/k), the
exponential term is e−2 = 0.14, having made 86% of its way to the
target. At three time units, the process is 95% complete. I always felt The three here

seems somuch

like the three
sigma in
statistics, does it

not?

that three time-constant units is a practical cut-off value to claim the
process has settled.

8.2 simulating device models

Now that we know about analog computers and opamps, let us sim-
ulate the device explained in the previous section (8.1). Here we have
a circuit (Figure 8.1) that implements the differential equation Equa-
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8.2 simulating device models

tion 8.2. However, note that the equation is identical to one that de-
scribes charging of a capacitor through a resistor (see subcircuit a of
Figure 7.4).

Figure 8.1: Charging a Capacitor.

Let v(t) be the voltage across the capacitor, that is the output voltage
in Figure 8.1. The current through the resistor, (vin(t) − v(t))/R also
flows through the capacitor.Thus,

vin(t) − v(t)

R
= C

dv(t)

dt

v(0) = 0

(8.6)

rearranging the terms, and adding the initial condition,

dv(t)

dt
+

1

RC
v(t) =

1

RC
vin(t)

v(0) = 0

(8.7)

we see that this is the same differential equation as Equation 8.2. Pro-
vided that vin is a constantU, as was assumed of F, we may readily
copy the solution as,

v(t) = U

1− e
−

t

RC

 (8.8)

Again, we expect the same behavior. Once the input voltage U is
applied to an empty capacitor, the voltage v(t)will rise asymptotically
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8.3 process control

to reach the supply voltageU.The time constant isRC. And once again,
at 1, 2, and 3 time constants, the voltage will have reached 63%, 86%,
and 95% of its target value ofU.

Build and observe the circuit, or at least simulate it (Figure 8.2). It
is best to select a rather large time constant so things unfold slowly. A
100µF capacitor charged by a 10k resistor would give us a time con-
stant of 1 second.

Figure 8.2: Voltage on a Capacitor being Charged.
(blue: excitation, red: capacitor voltage)

The blue line is the excitation, a 1V signal applied at time t = 1s. The
red line shows the voltage on the capacitor. Can you spot the magical
63%, 86%, and 95% progress?

This simulation ismore than just observing the similarities between
dampedmovement under a constant force and charging a capacitor.
The simple resistor-capacitor circuit will serve to model a first-order
device. Control engineers do not use the term device but rather plant.
The term comes from chemical engineering, where control engineers
wanted to carefully control the chemical processes by adjusting flows,
mix rates, evaporation, heating, cooling, etc. So, to the chemical engi-
neer, the thing to control is the plant.

8.3 process control

For machines revving up, a short start time is insignificant. But some-
times youmay want to do something to speed up the process. A good
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8.3 process control

example is when you are driving, you most likely hit the gas a bit more
to accelerate, like many do.Then ease off the gas to cruise.The initial
jolt overcomes the inertia – and the car has some inertia. I remember Recently, there is

a bit of chatter

regarding

acceleration boost

modifications on

Teslas.

cleaning the carburetor “acceleration boost” pumps in the 70s.These
were little bellows that pumped a metered amount of extra fuel if you
hit the accelerator in a hurry. Modern engine management systems
do it too.

So, what can we do to charge the capacitor faster? What may we do
to provide this acceleration boost?This, of course is an allegory.What we
really want is to speed up a process reaching its steady state. A boost
may also apply to charging capacitors (our first-ordermodel of a plant).
We start with a higher voltage and then lower the voltage to the target
U as the capacitor charges.With the larger-than-U initial voltage, that
is the boost, we force more charge into the capacitor sooner.

Here is the key idea: transfer functions become quite handy when
we study such control. In fact, transfer functions are the indispens-
able tool of control engineering. Here is a simple, first-order linear
approach that would come natural to you. Apply a voltage proportional
to the difference between the capacitor voltage and the target voltage.
That is, let e(t) = U − v(t) be the error at time t. Let the voltage
applied be a positive multiple of the error. As the error nears zero, so
does the control voltage drop.

Take a look at Figure 8.3.The output is sensed and fed back by the
inverting opamp A2, thus effectively multiplying the output by −1.
This is added to the input signal by the summing opamp A1. This
opamp finds the difference between the input and the output. That
difference is the error. The summing opamp A1 also multiplies the
error by 100. This is the control signal used to excite the “plant”.

Figure 8.3: Control Circuit (Excitation is Proportional to Error).
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8.3 process control

The only parameter of the proportional controller is its gain, hereK =
100. Depending on the plant, the controller is tuned by selecting the
appropriate gain. Too little gain, and the settle time will be long. Too
much, and depending on the plant, the controller may overshoot or be
unstable. We will briefly revisit the stability issue in Section 8.6.

When the target inputU = 1V is applied, the response of the circuit
is observed as given in Figure 8.4. Compare this to Figure 8.2.The blue
line is the target input (U), the green the excitation, or the output of the
control signal generated by the summer-multiplier.The red line show
the charge on the capacitor, or if you like, the state of the plant. The
time constant is 1s but the capacitor here charges in less than half-a-
second.Of course, this is due to the fact that there is considerable boost
in the beginning. In fact, the excitation saturates at 15V, which is the
supply voltage of the opamp. So, technically speaking, our controller
is not linear, since to be linear, the control voltage at the beginning
would have to be 100V (why?).

Figure 8.4: Control Response (Excitation is Proportional to Error).
(blue: excitation, green: controller output, red: capacitor voltage)

Did you notice that the capacitor voltage never reached the input? It
is just a little less than the target.Whydo you think this is? Instinctively,
you may say that at steady state, the output of the control circuit must
be the same asU. But this would mean that there must be an error of
(U − V)/G, whereG is the gain of the opamp. So the output never
reaches the target and there is always a little error, appropriately called
the steady-state error.
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8.3 process control

We can gain a better understanding of the system, that is, the con-
troller plus the plant, if we use transfer functions. You see, the output
of the controller is fed into the plant,while the output of the plant is fed
back into the controller. From a transfer-function viewpoint, we have
strung along subsystems. So the behavior of the entire system may
now be evaluated algebraically by our transfer-function approach.This
is perhaps the primary reason transfer functions are so prevalent in
electrical engineering. It provides a convenient pathway to analytical The adjective

“analytical”

literally means

“understand the

whole by

breaking into

parts and

studying the

parts.”

thinking.

Let us consider a subsystem with the transfer H(s) as shown in
Figure 8.5.The output V(s) is fed back through the subsystemwhose
transfer function isG(s). The inputU(s) then added to the feedback
signal. All signals and transfer functions are expressed in the (Laplace)
transform domain, which allows us to use algebraic equations to de-
scribe the net input-output characteristics of the system.

U(s) + H(s) V(s)

* G(s) *

Figure 8.5: Closed-Loop Control.

We have,

V(s) =
(
V(s)G(s) +U(s)

)
H(s) (8.9)

Combining the terms V(s), we get,

V(s) = U(s)
H(s)

1−G(s)H(s)
(8.10)

or,

V(s)

U(s)
=

H(s)

1−G(s)H(s)
(8.11)
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8.3 process control

Thismeans that we can replace the original system, the transfer func-
tionH(s) alongwith that of the feedback subsystemG(s),with a single
transfer functionQ(s).

Q(s) =
H(s)

1−G(s)H(s)
(8.12)

U(s) Q(s) =
H(s)

1−H(s)G(s)
V(s)

Figure 8.6: Equivalent System.

Now let us apply this to our example. In our case, the transfer func-
tionH(s) has two components, the gain (K = 100) and the resistor-
capacitor circuit from Figure 8.1, as discussed in Section 7.3 (see Fig-
ure 7.4).The controller is actually just the gain.The plant is the resistor-
capacitor circuit.

U(s) − V(s) K
1

sRC+ 1
V(s)

Figure 8.7: The Controller and the Plant.

The transfer functionH(s) is thus,
K

sRC+ 1
. Now we can apply the

expression we developed for the feedback system (Equation 8.12).

H(s) =
K

sRC+ 1
(8.13)

The feedback is simply the negative of the output,G(s) = −1. Thus,
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8.3 process control

Q(s) =
H(s)

1+G(s)H(s)

=

K

sRC+ 1

1+
K

sRC+ 1

=
K

sRC+ (K+ 1)

(8.14)

Theresult seemsawfully close to thegood-old transfer functionwehave
for the simple resistor-capacitor voltage divider. In fact, by tweaking
the expression just a bit, we get

Q(s) =
K

sRC+ (K+ 1)

=

(
K

K+ 1

)
1

s

(
RC

K+ 1

)
+ 1

(8.15)

Now, the transfer function is just like the one where we were charg-
ing the capacitor. Except for two things.The time constant is no longer

RC, but
RC

K+ 1
, and there is a gain of

K

K+ 1
. That the time constant is

reduced means that the circuit will act much faster, and charge the ca-
pacitor much sooner.The gain is actually less than unity, not by much,
but nonetheless, a little. Without the controller circuit, and with a
time constant of 1 second, the capacitor was practically charged in 3
seconds, if you recall discussion about the 95% in 3 time constants
(see Section 8.1). Now that we have the controller withK = 100we do
expect the time constant to be about 100 times shorter, and thus the
capacitor to charge in about 30mSec. Looking at Figure 8.5, we see
that this is not the case. Why?Well, because our controller could not
provide the 100V at the onset, but saturated at its supply voltage of
15V. So, we settle with a slower response time. Still, the opamp did
the best it could muster and the response is much faster than without
the controller.
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8.4 removing the steady-state error

The gain (actually, the attenuation)
K

K+ 1
explains the steady-state

error. In fact we could have calculated this without the transfer func-
tion. LetU and v be the input and output voltages at steady state.Then,

v = K(U− v)which gives us the same result,
v

U
=

K

K+ 1
.

8.4 removing the steady-state error

Our controller uses the amplified the error signal to excite the plant.
Several extensions are possible. Typically, not only the error, but the
integral and the derivative of the error may be used as the control
signal. Specifically, the integral of the error is useful, as its reduction
removes steady-state errors when the input is a constant (step input),
or at least, when the input changes infrequently.

U(s) − V(s)

Kp

Ki

∫
Ki(1/s)

+
Plant
H(s)

V(s)

Figure 8.8:The Proportional-Integral Controller and the Plant.
(Kp is the gain of the proportional controller and

Ki is the gain of the integral controller)

The controller is similar to proportional control.We still generate an
error signal, which is the difference between the input and the output.
This signal is now fed into two subcircuits. As before, one generates
a proportional control component of the excitation. In addition, the
same error signal is sent to an integrator. In Figure 8.8 we show the
branch that integrates the error signal with the

∫
sign as well as with

1/s. This is because integrating the signal in the time domain is equiv-
alent to dividing the transform1 domain function by its variable s. The

1 Laplace transform, of course
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8.4 removing the steady-state error

integral error also has a gain, hereKi.The outputs of the proportional
and integral errors are added and used as the plant-driving excitation.
Let us apply the concept to our circuit. Again, we use a unit step input
to observe how quickly steady state is reached.The plant model is the
same first-order systemwith a time constant of 1 Sec, equivalent to
charging a 100µF capacitor through a 10k resistor.

Figure 8.9: Proportional and Integral Control Circuit.

You probably recognized the various sections of Figure 8.9. Once again,
the output voltage is inverted (A5) and added to the input by a summer
(A1).This is the error voltage that will now be used by the proportional
and integral amplifiers. OpampA2 integrates the error voltage, and
A3 amplifies it(Kp = 10). Note that the integrator A2 also has a
gain ofKi = 200 (why?). It integrates and amplifies – nice, is it not?
The summer amplifier (A1) is configured as an inverting amplifier.
But the integratorA2 and the amplifierA3 are also in the inverting
configuration. So, while the negative of the error is being integrated
and amplified, the outputs atA2 andA3 are once again sign-corrected.
The following stage adds the outputs of A2 and A3. Now that the
signals are sign-correct, wemade sure that the summerA4 is in the
non-inverting configuration.

There is a bit of subtlety here – did you catch it?The output of the
summer amplifier is actually the average of the two input signals. It
is good that the two input resistors toA4 are the same. Otherwise, it
would not be a simple average. With identical resistors, the voltage at
the non-inverting input is the midpoint between the two signals to
be added. So, the output ofA4 is the sum divided by 2. As an added
bonus,A4 also has the capability to amplify the sum of signals. Here,
the gain is set to 2, which makesA4 a true summer. Youmay chose to
increase the gain of this stage by increasing the value of the feedback
resistor.The gain may be reduced all the way to unity by configuring
A4 like a voltage flower.
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8.5 a second-order plant

We kept the same plant model for now. Wemay change the plant
model in further experiments, but the basic circuit configuration
would serve us fine.The controller now has two parameters.The gain
of the proportional controller and the gain of the integral controller.
With these, we may tune the controller to our needs. First, though,
we will try to eliminate the steady-state error of the proportional-only
controller.

The proportional controller with gainK = 10 gives an almost 10%
steady-state error. We investigated this phenomenon in the preceding
section (Section 8.3). As seen in Figure 8.10, the steady-state error di-
minishes when the controller also uses the integral of the error signal.

(a) Proportional Control (Output =
0.909V, gain K = 10, steady-state
error is (K+ 1)−1 )

(b) Proportional and Integral Control
(Output = 1V, no steady-state error,
Kp = 10 andKi = 200)

Figure 8.10: Proportional and Integral Control (Unit step input 1V ).

The unit step input is applied at time t = 10 Sec. Once again, we see
that the time to settle to steady state is reduced from approximately 3
seconds with no controller to about half a second with the controller.

8.5 a second-order plant

While the preceding sections provide insights into control, the simplic-
ity of the plant somewhat hidesmany design concerns. For starters, let
us consider plants with more character. After all, charging a capacitor
translates into a rather mundane transfer function.
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8.5 a second-order plant

Figure 8.11: A Second-Order Plant Model.

The tank circuit (8.11) would make an interesting plant model. We
know that this circuit would have a resonance frequency proportional

to
1

√
LC
. As LC is in the order of 10−7, we would estimate, order-of-

magnitude-wise, the resonance frequency to be around 1kHz. Using
the proportional control as in Figure 8.3, with a gain of K = 10 we
observe the response of the controller to a unit step input at time
t = 1 Sec. The system quickly settles, but not without ringing like
a bell. The steady-state error seems like the case with the first-order
plant model.

Figure 8.12: A Second-Order Plant Model with a Proportional Controller.

Next, we try the integral controller as given in Figure 8.9, but with-
out the proportional controller. The response is swift and without the
ringing we see with proportional control. If we use both the propor-
tional and the integral controller, it seems wemust tune the circuit so
that the proportional controller gain is low. After a certain threshold,
the proportional controller induces the characteristic high-frequency
ringing we have observed.
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8.5 a second-order plant

Figure 8.13: A Second-Order Plant Model with a Integral Controller.

The proper way to analyze the effect of the controller is to construct
the transfer function of the entire system: the plant, the controller, and
the feedback portion of the circuit.We had develop all the needed tools
in Section 7.4, Section 8.3, and Section 8.4 to do this. The controller
has a transfer function,

C(s) = Kp +
Ki

s
(8.16)

whereKp is the gain of the proportional controller andKi is the gain
of the integral controller. The term 1/s corresponds to integrating the
signal. The plant is a tank circuit built with a capacitor, an inductor,
and a resistor. LetC, L, and R be the values of these components.The
transfer function is computed as,

P(s) =
R

s2RCL+ sL+ R
(8.17)

The feedback portion of the controller is simply an inverter, and
thus its transfer function isG(s) = −1. The transfer function of the
feedback systemwas developed in Equation 8.12.The controller and
the plan combination has the transfer function,
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8.5 a second-order plant

H(s) = C(s)P(s)

=

(
Kp +

Ki

s

)
R

s2RCL+ sL+ R

=
KpR

s2RCL+ sL+ R)
+

KiR

s3RCL+ s2L+ sR

=
sKpR+ KiR

s3RCL+ s2L+ sR

(8.18)

Theequivalent transfer function for the entire system is then computed
as developed by Equation 8.12.

Q(s) =
H(s)

1+H(s)

=

sKpR+ KiR

s3RCL+ s2L+ sR

1+
sKpR+ KiR

s3RCL+ s2L+ sR

=
sKpR+ KiR

(sKpR+ KiR) + (s3RCL+ s2L+ sR)

=
sKpR+ KiR

s3RCL+ s2L+ sR(Kp + 1) + KiR

(8.19)

Now that we have an expression for the transfer function of the entire
system, wemay study its behavior and select the parameters, namely
Kp andKi to tune the controller to best suit the plant whose character-
istics are determined by the values of R,C, and L.

Does the fact that our transfer function has a denominator polyno-
mial of degree 3 surprise you? It indicates that the entire system is a
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8.6 tuning controllers

third-order system.Well, it should not.The plant is already a second-
order system. Coupled with an integrator increments its order once
more.

One last thing: what about the units? Look at the coefficients of the
polynomials. The reciprocal of time is frequency. Recall that s = jω Once again, this

is why the

transform

domain is

referred to as the

frequency
domain. Its
variable s has

units [T ]−1

(frequency).

and thus has units [T ]−1.The gainKp of the proportional controller
is a unitless constant, since it is the ratio of the output voltage to the
input voltage of that subcircuit. The gainKi of the integral controller
has units [T ]−1. Why?Well because the input to the integrator is volt-
age but the output is voltage integrated over time. So the output has
units [V][T ]. The gain is the ratio of the output to the input. Tomake
the subcircuit consistent the gain must have units [T ]−1. This makes
the units of the numerator terms consistent, both terms have units
[R][T ]−1.The denominator ofQ(s) has four terms.The last two terms,
sR(Kp+1) + KiR look just like the numerator, and thus have the same
units, [R][T ]−1. What about the first two terms in the denominator?
The impedance of the inductor is sLwhich has the same units [R]. So,
s2L has the same units as sR, and thus is also consistent with the units
of the numerator. Finally, the first term, s3RLCmay be seen as the
product of sRC and s2L. We already found that latter term has units
[R]/[T ], but what about the term sRC? SinceRC is a time constant, the
term sRC is unitless. Both the numerator and the denominator have
units [R][T ]−1. Such checks is useful when you do some calculation, It
is good to go over your units as part of a design rule check step – just to
make sure.

8.6 tuning controllers

The preceding approach andmethodology would work for almost any
control task. We work with transfer functions, combine the controller
and the plant, and then the feedback subsystem. Our feedback is sim-
ply an inversion, but there may be other, more sophisticated ways of
designing controllers with fancier feedback circuits. Ultimately, the
transfer function of the entire system becomes parameterized as we
see here.That is, the specifics of the transfer function now relies on
the choice of parameters such as the individual gains. By selecting
appropriate parameters, we tune the controller. Typically, there is an
objective function and some constraints. For example, wemay wish
to minimize the settle time for a given input, while keeping the over-
shoot below a certain limit. High on ourmind should be the stability of
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8.7 experimentation and reflection

the system. Note that we encounter oscillatory responses if the zeros
or poles are complex. Keeping them real eliminates any oscillatory
behavior. Moreover, the real components of the complex roots of the
denominator or numerator polynomial would guarantee that the the
signals settle and not grow boundlessly.

Engineers sometimes view tuning such circuits as relocating the poles
and zeros of the transfer function. Studying how (in which direction)
the poles or zerosmove as you change the system control parameters is
a worthy topic. You could in principle, write the transfer function and
compute the poles and zeros by some engineering software.Then plot
these as you loop through different parameter values.This would be a
much insightful exercise. Doing so analytically, as one may appreciate,
is possible, but somehow best left to a subsequent review of the topic.

8.7 experimentation and reflection

1. Adjust the gain of the controller in Figure 8.3 so that the opamp
does not saturate. Observe the time constant of the controlled
system and verify that our computations (Equation 8.14) hold.

2. Reduce the gain of the controller in Figure 8.3 and observe the
response times.That would happen if the gain is less than unity?

3. Try different plantmodels in Figure 8.3 andobserve the response
times over a range of gains, say fromK = 1 to 1000.

4. Change the gain of the proportional and the integral compo-
nents of the control signal in Figure 8.9. What are the affects of
these parameters?

5. Note that when integral control is used to control a first-order
plant, the aggregate controller-plant system becomes a second-
order system. Second-order systems are generally capable of
oscillatory behavior. Howwould you change the controller pa-
rameters to induce or suppress oscillatory behavior?

6. Review the proportional-integral controller of Figure 8.9 and the
second-order plant model of Figure 8.11, along with the trans-
fer function as computed by Equation 8.19. Using the transfer
function, compute the frequency of the oscillations before the
controller settles. Compare this value to the observed frequency.
How do the controller parameters affect the frequency.
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8.7 experimentation and reflection

7. Again, referring to Equation 8.18, explain why proportional con-
trol seems to promote oscillations, while integral control seems
to suppress them.

8. Compute the poles and zeros of the transfer functions devel-
oped in this Chapter. Try different parameter values and plot the
values of the poles and zeros as a function of parameter values.

9. Considering the poles and zeros of the transfer functions devel-
oped in this Chapter, is it possible that a pole and a zero would
coincide? If so, what does this say about the transfer function
and the system?

10. Can you think of non-linear control schemes? Design and exper-
iment with these and see if they have any advantages over liner
controllers.
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Part VI

OPAMP APPL ICAT IONS

Workhorse circuits, power circuits, fun circuits, clever
circuits, wickedly clever circuits.

National Semiconductor
LM324 Quad Operational Amplifier, 1972



9
COLORFUL OPAMP C IRCU IT S

Now that we have a grasp of the basics, let us take a look at a few in-
termediate opamp circuits. Our objective is not to provide a complete
set of rather well-known applications, but to present enough differ-
ent circuits to show the versatility of the device and the richness of
its application domains. While we design our circuits, we continue
to assume that our opamps are ideal devices, that is, many of their
parameters are extreme (see Table 2.1).

These assumptions simplify design efforts. However, whenwe think
about practical aspects of the design, wemust pay attention to the lim-
itations of the opamp. A similar case was encountered in Section 8.3
when the proportional controller output was saturated at the supply
voltage, and hence, the settle time was longer than ideal. Good en-
gineer practices promote the achievement of goals through robust
design, rather than the use of exotic components. For example, if noise
is important in your design, then composing the circuit, selecting the
component placements and the tracks, etc. must be on your mind. A
haphazard design, but one that uses a special low-noise opamp would
be frowned upon. Not that it may not work, but rather it would seem
like sloppy professionalism. After all, one may submit a rather Kan- I have often

wondered about

this. Should these

concerns not be

included in

engineering
ethics?

tian[6] claim that doing so unnecessarily wastes resources, and thus is
harmful to society and to the environment.

We start with a tribute to many an opamp whose lives are dedicated
to serving as building blocks. There so many such applications that a
complete survey would require a treatise of orders of magnitude more
voluminous that this book. If you seek a large set of different applica-
tions, I would recommend how I delved into the subject: by reading
application notes of chip manufacturers. A nice collection is by Texas
Instruments,which isnowalsoavailable as abook [7].Goodapplication
notes are available frommany other manufacturers, Analog Devices,
Linear Technology, National Semiconductor, Maxim Integrated, etc.
Companies seem to change, merged or acquired, over time, but their
application notes often remain available. Before the Internet, I vividly
recall the 4-inch thick data-book fromNational Semiconductor, and
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9.1 some workhorse opamp circuits

the many a projects I designed using ideas from it. If nowhere else,
youmay find these old books preserved on www.archive.org.

9.1 some workhorse opamp circuits

Many opamps are used as voltage or current sources, especially in in-
strumentation applications. Consider the following voltage-controlled
current source circuit.

Figure 9.1: A Current Sink.

The circuit works as a current sink.The current that flows through
the circuit is determined by the input voltage Vin and the value of the

resistor R. The current is I =
Vin

R
. The circuit uses a common silicon

NPN transistor, one that I have reached out to for many such routine
tasks. We used to buy them in large bags and use the 2N2222 as our
default small-signal transistor.The 1k at the base is a current-limiting
resistor, mostly for the protection of the transistor. When R = 1k for
example, you get a 1mAper volt sink.This circuit is just a genericway
of looking at current sinks. Many extensions present themselves. You
may, for instance, set the input voltage by a zener diode and construct
a fixed current sink. Or you may use a Darlington transistor to sink
higher currents. You may use a PNP transistor and build a current
source, rather than a current sink. Typically, the current sink would be
a subcircuit of a larger system. As you gain experience and scan circuit
diagrams, once again, you come across such circuits and they register
as building blocks rather than individual components.

Not all opamp circuits are linear circuits. The following is known as
the ideal rectifier. The operating principle should be fairly easy to spot
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once you notice that Vout is actually the same as the voltage at the
noninverting input.The two inputs of the opamp would be essentially
at the same voltage, when Vin is positive.Then the diode is forward
biased, with current flowing through the load resistor. That would
mean that the output voltage is the same as the input voltage.However,
when the input voltage is negative (below the ground reference), then
the diode is reverse biased, with no current flowing through it. The
voltage at the output would be the same as the ground reference. In
this case, of course, the two inputs of the opampwould not be the same.
The opamp output would be saturated, close to the negative supply.

Figure 9.2: Ideal Rectifier.

It is theart of engineering, oncearticulated, toput suchbasicbuilding-
block circuits in your toolbox, only to be revisited, extended, and re-
purposed. A good extension is the so-calledmax circuit.

Figure 9.3: Maximum of the Inputs.

I am sure you see the family resemblance[9] to Figure 9.2 here. Each
opamp operates as an ideal rectifier.The input voltage that is higher
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not only drives the output, but since this voltage is greater than the
other input, it forces the other opamp to saturate at the negative supply
voltage. Here is another nice extension.This one is known as the peak
detector. Actually, it does not detect the peak, but the locks on to and
outputs the peak voltage.

Figure 9.4: Peak Voltage Detector.

Once again, it is easy to see the basic rectifier circuit hidden in the
peak detector. Of course, over time the capacitor will leak and the peak
voltage will drop. In practical circuits, it probably would suffice to keep
the peak voltage for a limited time, anyway.

Now let us switch our attention to a different class of circuits. We
discussed active filters in Part III. If you are designing filters for audio
applications, you would naturally want to keep distortion at a mini-
mum. You would be careful not to saturate the opamps, otherwise the
clippings at the extremes would cause unwanted distortion. But some
actually like distortion. It is legendary that early electric guitar players,
due to the inherent quality of the amplifiers, have used distortion as a
musical element. Howwould you create such distortion? Here is one
popular approach.

Figure 9.5: Simple Fuzz.
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The resistors form the usual amplifier. However, silicon diodes have
a forward voltage drop of about 0.7V. This limits the output voltage
range, effectively clipping the signals. Youmaymake one of the resis-
tors a potentiometers and change where the signals will be clipped. I confess, this

type of fuzz does

not yield the best

sound.

The severity of clippings, and thus the distortion, is often controlled
by a potentiometer labeled fuzz.Then, another output stage with its
own potentiometers independently may set the volume and the tone.

A set of outputs is given in Figure 9.6 with the input set to the high
A note (880 Hz). Even though the shape of the output varies just a
little, the ear will perceive these at different levels of fuzziness. The
higher the gain, the more rectangular the output signal. The rises and
drops are more vertical when the gain is higher. The ear catches all
this because the harmonics of the distorted signals change quite a
bit when their shapes so change. Note that we did not use an ideal
diode, but one that is more realistic (1N914). The rounded corners of
the clippings attest to the fact that the forward voltage drop changes
with increasing current through the diodes.

(a) Gain = 1 (b) Gain = 2

(c) Gain = 5 (d) Gain = 10

Figure 9.6: The Effect of the Fuzz Setting on Clippings.
(blue: input signal, red: clipped output signal)

I must, however, say that opamp-based fuzz pedals do not quite live
up to audiophile expectations. Pedalsmadewith individual transistors
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are preferred, partially due to the sound that they produce. Also per-
haps, as the signal passes through fewer transistors the signal remains
somewhat raw and authentic.

Speaking of periodic signals, opamps make nice astable multivibra-
tors. Consider the basic idea given in Figure 9.7.

Figure 9.7: An Astable Multivibrator.

Doyou recognize the hysteresis – theuse of positive feedback? If not,
revisit Section 1.10. Now, do you also recognize the voltage divider?
The 10k resistor and the 10µF capacitor form our trusty old voltage
divider. As the capacitor is charged, the voltage at the inverting input
raises until it exceeds the voltage at the noninverting input.Then, the
output switches, and the capacitor is discharged until its voltage drops
below the voltage at the noninverting input.The noninverting input,
of course, is fed by the 2k − 10k voltage divider. As the output swings
between the supply voltages, the voltage at the noninverting input

switches between V+ =
10

12
Vs and V+ = −

10

12
Vs, where Vs is the

supply voltage.The fraction
10

12
is close to our magic 86%. Now, as a

voltage divider, the time constant is 10µF·10k, or 10mS. It will take
around two time constants to charge the capacitor to 86% of the supply.
So we should expect a relatively low frequency at the output, in the
1Hz to 10Hz range.
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Figure 9.8:The Output of the Astable Multivibrator.
(red: output, blue: voltage on the capacitor)

The output is a symmetrical square wave. It is symmetrical, because
the charge time and the discharge time of the capacitor are the same.

This is a good place to combine the things we know to create new
things.This is the spirit of synthesis – creation from combination of
known parts. It is the opposite of analysis. But not the same as creativ-
ity that produces a completely new thing. Most engineering design is
synthesis, not absolutely novel innovations. Those often come from
basic sciences, anyway. So, let us say thatwe do notwant a symmetrical
output, but one that has a certain duty cycle. The term “duty cycle” is
the fraction of time the square-wave signal is at a high voltage. By the
way, we say square wave, but we really know that the shape ismore like
a rectangle. You may, of course play with the units of time and voltage
to make the geometry on the graph look exactly like squares.

Duty cycle is a nice feature. Youmay use it for pulse-widthmodulation,
essentially changing the duty cycle to adjust the energy output. It is
also commonly used in servo motors, the type radio controlled mod-
els use. There, the pulse width determines the position of the servo.
Consider the following extension to Figure 9.7.This is a rather obvious I was so proud of

myself when I

thought of

putting a

trimmer (small

potentiometer

you set with a

screwdriver) to

set the duty cycle.

extension.We use diodes to channel the charging and discharging cur-
rents to go through dissimilar resistors, thereby changing the charge
and discharge times.
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(a) Duty cycle determined byR1 andR2 (b) Duty cycle determined by the poten-
tiometer

Figure 9.9: Asymmetrical Astable Multivibrators.

Let us build Figure 9.9a first with R1 = R2 = 10k and then with
R1 = 20kandR2 = 6.8k. Itwouldbebest ifwecouldfinda6666Ohm

resistor to keep the periods of the two signals the same.The standard
value closest to our needs is 6.8k. The standard values are selected for
a reason.

(a) Duty cycle is 50% (b) Duty cycle is≈ 75%

Figure 9.10:The Output of Asymmetrical Astable Multivibrators.
(blue: capacitor voltage, red: output voltage)

Since you know well how to compute the time that the voltage on a
charging capacitor reaches a given fraction of the supply voltage, you
should have no trouble computing resistor values that would result in
a given frequency and duty cycle for your multivibrators.

There aremanymanymore possible applications of opamps, but for
an initial exposure, let us leave the fun circuits and look at some quite
ingenious designs.
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9.2 power circuits

Sometimes you want to drive heavy loads.The output of an opamp is
typically around a few hundredmW (milli-Watts). You could simply Named after

JamesWatt

(1736-1819), of

course, the

Scottish inventor-

engineer of the

steam engine

fame

add a push-pull stage to your opamp.This configuration is called “push-
pull” because the NPN transistor pushes current to the load (sources),
and the PNP pulls (sinks). Together they drive the load, both sourcing
and sinking current.

Figure 9.11: Power Boost.

If your application is to drive relays, or motors, etc. then Figure 9.11
would probably suffice.The transistors may even be Darlington tran-
sistors to provide more output current. When the output is at ground
reference, both transistors are off, so the quiescent current is practi-
cally non-existent. However, it will take some time for the transistors
to turn on, so the circuit will suffer from cross-over distortion. Cross-over
distortion is easily eliminated by adding a bit of quiescent current to
keep the transistors at the verge of turning on (Figure 9.12).

You may be wondering why I did not specify the resistors values.
Well, those depend on a few things.The choice of the transistors, prob-
ably, would have the greatest say in how to bias the output stage.
Here is one (Figure 9.13) that would work up to 80V and 1.5A. It
uses the popular complimentary pair of medium-power transistors
BD139 − BD140.
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9.2 power circuits

Figure 9.12: Power Boost with no Cross-Over Distortion.

Figure 9.13: A Practical Power Boost Stage.
(Use small signal silicon diodes such as 1N914)

Theopamp is configured as an inverting amplifier with gain 3.3.The
small capacitor in the feedback loop discourages any high-frequency
signals or circuit-generated oscillations due to stray capacitances be-
tween the output and the input. The diodes bias the transistors by
compensating for the voltage drop at the base-emitter junction. Some
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people like a higher quiescent current. You may put three diodes in I remember

vividly building

an amp in college

only to burn the

output

transistors

because there was

high-frequency

feedback. Since

then, I always

practice safe

amplification

and add a little

cap parallel to the

feedback resistor.

series. And guess what, it does notmattermuch fromwhich diode you
drive the output stage, as the feedback loop will take care of any offset.
The input impedance is 10K. We added the same to the noninverting
input to load the opamp symmetrically. If the opamp were an ideal
opamp it would not matter. But in practice it improves performance.

9.3 clever circuits

Let us revisit our multivibrator (Figure 9.7) and consider the following
seemingly innocuous modification (Figure 9.14).The 10µF capacitor
in the original circuit is now replaced by a small circuit that still has
the same capacitor at its core.

Figure 9.14: A Multivibrator with a Virtual Capacitor.

What would you expect the effect of this modification to be. If you
build and observe the output, you once again see the output of a typical
astable multivibrator (Figure 9.15).

Compare the output to that of the original circuit (Figure 9.8). Looks
similar, but hold on – look what happened to the period of the output
signal. It is a couple of orders of magnitude longer than the response
of the original circuit. How is that possible, the capacitor is still 10µF?

Thewickedly clever subcircuit virtual capacitor shown in Figure 9.14 is
referred to as a capacitance multiplier. It makes the capacitance appear
a lot more than it actually is. Many engineers simply learn this and
memorize the formula (Figure 9.16).

130



9.3 clever circuits

Figure 9.15: The Output of the Multivibrator with a Virtual Capacitor.
(blue: voltage at the inverting input, red: output voltage Vout)

In our example, R1 = 10 Ohm. We introduce a series resistor, but
it is quite small to have any significant effect on the operation of the
multivibrator.The equivalent capacitance, however, is multiplied by by

100, that is,
1k

10
. Often, engineers would remember to keep R1 small,

and ignore it, thinking the capacitance is multiplied by
R2

R1
. That is

the basic level of understanding. Let is call this level 1 understanding.
A more serious engineer might derive the equations from the basic
relations. After all, the voltages and currents are all available. Such an
analytical approach is made possible because we have formal systems
of expressing natural phenomena. All this comes from robust rules
of inference, which, when applied, will give us demonstrably correct
results.We need not understand the physics of it, but just be careful to
follow the steps rigorously. Many good engineers, textbooks, and pro-
fessors would have an understanding at this level. Let us call this level 2
understanding. Actually, with the advent of the Internet, now a level 0
understanding is also prominent.The engineer does not know any of
the details of the concept or any formula, only that there is such a thing
called “capacitymultiplier”. Maybe not even that. If the engineer hears
the term, a look up on a search engine gives the needed information
in a compact form.There may even be demo circuits that the engineer
could find and consume with a simple CTRL-V / CTRL-Cmaneuver. Let
us call this level 0 understanding. None of these would be sufficient to
truly appreciate the novelty of the circuit. Nonewould allow a complete
internalization of the subtleties.The analytical level 2might come close,
but no cigar. However, engineering is about designing and producing
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Figure 9.16: A Virtual Capacitor and its Equivalent.

R∗≈R1, C
∗≈C

(
1 +

R2

R1

)

artifacts. Design is a creative process that needs intuition and insight,
along with imagination and a deep understanding. I can almost hear
you ask, “is there a level 3?” Yes, indeed.There is away to view the circuit
so that it makes sense beyondmemorizing or looking up the formula
or deriving it from basic principles.

Any level 3 understanding starts with a clear comprehension of the
phenomenon. I often tell my students, “be one with the circuit” or “feel
the circuit, Luke”. It sounds Zen, but it works – at least it has always
worked forme as a commercial engineer who designedmany products.
Here, a re-draw will be worth a kilowords.

I ask that you first compare Figure 9.17 to the virtual capacitor given
inFigure 9.16 and convince yourself that they are exactly the same.Now,
let us imagine that one does not seewhat is in theBOXwithin the blue
dashed lines. We then apply a voltage to the terminal and observe the
response of the capacitor voltageVCon the series subcircuitR2-C.The
time constant in our multivibrator (Figure 9.14) is R2C = 1k10µF =
10−2Sec. If we apply a step input, for instance, we should see the
customary 63%, 86%, 95% rise during the first three time constants
at node VC. Suppose we observe the exact response at node VC∗. For
all practical purposes, we would assume that the two parallel branches,
theR2-C and theR1-BOX, are both resistor-capacitor voltagedividers
with the same time constant.That is, it would be reasonable to think
that there is a capacitor, real or virtual, in theBOX.Well,VC andVC∗

are indeed at the same voltage, because the opamp senses the voltage
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Figure 9.17: A Zen View of the Virtual Capacitor.

VC and dutifully replicates the voltage at its output, VC∗. Moreover,
the capacitanceC∗ of this virtual capacitor must be such that it gives
the exact same time constant as the first branch.That is,

R2C = R1C
∗

C∗ = C
R2

R1

(9.1)

Then the entire circuit, dominated by the virtual capacitor, would
function roughly the same as the series resistor R1 and a virtual ca-

pacitor C∗ = C
R2

R1
. In Figure 9.14 the capacitance of C is effectively

multiplied by 100, so the 10µF capacitor appears as a 1mF capacitor.
Hence the multivibrator Figure 9.14 generating long pulses with a very
low frequency.

What is thebenefit of level 3understanding? I think it takes you closer This is indeed

funny wording.

The root of the

word engineer is
ingenuity.

into the realm of ingenuity. Now consider the extension (Figure 9.18).

If you understood the virtual capacitor, and the way voltage drivers
work, you should have no trouble grasping how a small capacitor-
resistor subcircuit, with the help of an opamp can imitate a large
inductor.
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Figure 9.18: A Virtual Inductor and its Equivalent.
R∗≈R1, L

∗≈R1R2C

Let us close this sectionwith awickedly clever circuit (Figure 9.19). It
not only exemplifies engineering excellence, but also is quite versatile,
and thus, may be used in many designs.

Youmay consider Figure 9.19 as a generalization of the virtual capac-
itor and virtual inductor. It shares the same architecture, as it has an
input terminal and the other end is at ground voltage. If you want to
make sense of this circuit, first note that the two inverting inputs are
connected, so they are at the same voltage. If the circuit is operating in
its linear region and no opamp is saturated, the noninverting inputs
must also be at the same voltage level. That is, all opamp inputs must
be at the same voltage level, as marked.The output voltages of the two
opamps are alsomarked.Wemay now start computing the currents i1
to i5 through the componentsZ1 toZ5. Note, however, that i2 = i3
and i4 = i5 (why?).

i5 =
Vin

Z5
= i4 =

V1 − Vin

Z4

(9.2)

So,

V1 − Vin = Vin

Z4

Z5

(9.3)

Similarly,
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Figure 9.19: Generalized Virtual Load.

i3 =
Vin − V1

Z3
= i2 =

V2 − Vin

Z2

= Vin

Z4

Z3Z5
=

V2 − Vin

Z2

(9.4)

Which means that,

Vin − V2 = Vin

Z2Z4

Z3Z5

(9.5)

Finally,

i1 =
Vin − V2

Z1
= Vin

Z2Z4

Z1Z3Z5

(9.6)

The effective impedanceZe of the circuit is
Vin

i1
, which is,

Ze =
Vin

i1
=

Z1Z3Z5

Z2Z4

(9.7)
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With five different components or subcircuits to choose from, there
is much latitude in this configuration. Many different loads might
be created for various functionalities. Youmay also use this to model
other systems, as in analog computation or control engineering.

Before we close this chapter, let us view just onemore example from
amyriad of possible ones.The circuit (Figure 9.20) is referred to as a
negative impedance converter, often abbreviated as “NIC”.

Figure 9.20: A Negative Impedance Converter and its Equivalent.
If R1 = R2, thenZ∗ = −Z.

Let us consider the special caseR1 = R2.The extension toR1 ̸=R2 is
fairly straightforward. Rather than writing the equations, let us once
again appeal to your intuition. Suppose we start at equilibriumwhere
the input is at ground reference voltage (0V). The opamp inputs and
output may remain at this equilibrium indefinitely. Now suppose that
you raise the input to v > 0. Since v is applied to the noninverting
input, the opampwill respond by increasing its output to 2v so that the
inverting input is at the same voltage v as the noninverting input.The
output will be 2v because R1 = R2, and the inverting input is always
at half the voltage of the opamp output. Now look at the component
with impedanceZ. Its one end is at 2v and its other end is at v, thus
a current will flow through the component, but in reverse direction.
We conclude that the circuit passes the same current throughZwith a
voltage difference of−v = 2v− v rather than a voltage difference of
v = v− 0. Only the direction is changed.Thus, the impedance of the
circuit is−Z.The name negative impedance converter fits its function
perfectly.
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Where may you use a NIC? If you have a component with an un-
wanted impedance, say the internal series resistance of an inductor,
youmay add the NIC to cancel out this impedance. Quite ingenious,
is it not?

9.4 experimentation and reflection

1. Considering the current sink (9.1), how would youmodify the
circuit so that the sink current is maintained between a lower
and upper bound. Say, we want a current sink that allows any
current between 1mA and 2mA.

2. Extend Figure 9.3 to find the maximum of three input voltages.

3. Extend Figure 9.3 to find theminimumof the two input voltages.

4. The ideal rectifier (9.2) may readily be used as a half-wave recti-
fier. How would you extend this concept to a full-wave rectifier?

5. Revisit Figure 9.4. Place a circuit that discharges the capacitor,
so that the peakmay be reset. What are the desiderata for the
discharge circuit?

6. Design an astable multivibrator with a frequency of 1kHz and a
duty cycle of 20%.

7. Design and test a circuit that uses a virtual capacitor.

8. Design and test a circuit that uses a virtual inductor.

9. Design and test a tank circuit that uses a virtual capacitor and a
virtual inductor to achieve a very low resonance frequency.

10. Design and test a circuit given by Figure 9.19. Compare the ob-
served response of the circuit to the computed response.

11. Extend the circuit given by Figure 9.19 to three opamps and
seven components. Obtain its effective impedance. Can you
guess what the effective impedance would be in the general case
with an arbitrary number of opamps?

12. Build the following circuit.
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Figure 9.21: A Negative Impedance Converter Experiment.

If the NIC actually is equivalent to a−10k resistor, you should

see Vb = 0V and Vb =
ACin

2
. Verify that this is the case.

13. Referring to Figure 9.20, derive the formula for the equivalent
impedance where R1 ̸=R2.
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EP I LOGUE

This short excursion meant to provide a gut-level understanding of
opamps. Along the way, we needed to visit some formalisms, some re-
lated topics such as complex numbers, transfer functions, the Laplace
transform, frequency-domain ideas, and phasor algebra. By nomeans
one could claim that we have done justice to these ideas. Our exposure
was simply a glance – a stroll in the park.There is much formalism to
be pursued if one must truly command these topics.

Similarly, we saw a fewmundane and a few interesting opamp cir-
cuits. The set presented was perhaps the most superficial possible.
There are so manymore opamp applications that one may be justified
to think that no single book could encapsulate its totality (although
[4] and [7] come pretty close). Nonetheless, we hope we gave some
insights that would contribute to engineering intuition. Rather than
rely on formalisms, the approach tried to appeal to your instincts.

There is tradition that engineering subjects, as it is with the sciences,
are written succinctly in what may be called a presentationmode. Here
the topic starts with the definitions, and adhering to trusted rules of
inference, you are lead to the conclusions.There is little doubt that the
conclusions must hold as long as the premises were agreed upon.This
leads to formalisms, which can be followed step by careful step, as does
a computer. And we all know, such formalisms help us to computerize
and to save us time. However, anything you do the same way a com-
puter does seems efficient but mindless. Moreover, almost none of
the concepts are discovered this way. Engineering discoveries typically
happenwhen youperformsome tasks a few times, then start observing
the similarities, the patterns, the trends, the hitherto hidden structure
and start developing insights. Then the results, when stated, come
natural – without the need for extensive formalisms. Youmay not be
able to prove the results, but you have inductive confidence, notwith-
standing the problemof induction[5].There are historical, pragmatic, and
rational reasons whymost textbooks prefer to follow a presentation
mode exposure. In this bookwe attempted to follow a discoverymode ex-
cursion into the territory. I think this latter approach is much needed,
especially in introductory engineering textbooks. We did not cover
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all, and we did not prove anything here. We even told anecdotes. At
times the stories may have soundedmore like mythology rather than
engineering. A careful blend of Feynman [3] andCampbell [2] comes to
mind. Alas, the current brief exposé approaches neither in its esoterics
or eloquence.

Mastering a subject seems to require repetition.This repetition is
best, if each time the reader focuses on the topic at a deeper level.
Otherwise, repetition would be akin to memorization. Memorization,
one may argue, is the complete opposite of understanding.This book
would best serve as an initial broad review of the subject, to pigeonhole
the concepts into their proper places, and to gain some insights before
a rigorous treatise is attempted.

Studying basic electrical engineering concepts through opamps is
also a viable thought.This bookwaswritten as Iwas asked to teach part
of a general engineering course taken bymore non-electrical engineers
than electrical engineers. Opamp circuits are easier to build and test,
compared to transistorized circuits. An opamp amplifier could be built
with just two resistors, as we have seen. With transistors, one must
worry about biasing, etc. With vacuum tubes, evenmore.

Beyondelectrical engineering, Iwould submit that studyingopamps
with a bit of flavoring from all its related topics is an excellent way to
appreciate systems, natural phenomena, our instincts to use such
for our own utility, and the various formalities we have developed to
operationalize and internalize the concepts. As such, at the end, I
suppose the topic in its totality says more about human nature than
about nature itself. It demonstrates, once more, how humans have
relentlessly tried and toiled to devise constructs to shape their envi-
ronment, not only with physical artifacts, but also with their thoughts
and formalisms, leading to intuition and instincts not to be found in
nature herself.
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